[1] P. Reddy, S.Y. Jang, R.A. Segalman, A. Majumdar, Thermoelectricity in molecular junctions, Science 315 (2007) 1568-1571.
[2] K. Baheti, J.A. Malen, P. Doak, P. Reddy, S.Y. Jang, T.D. Tilley, R.A. Segalman, Probing the chemistry of molecular heterojunctions using thermoelectricity, Nano letters 8 (2008) 715-719.
[3] J.R. Sootsman, D.Y. Chung, M.G. Kanatzidis, New and old concepts in thermoelectric materials, Angewandte Chemie International Edition 48 (2009) 8616-8639.
[4] N.A. Zimbovskaya, The effect of dephasing on the thermoelectric efficiency of molecular junctions, Journal of Physics: Condensed Matter 26 (2014) 275303.
[5] D. Nozaki, H. Sevinçli, W. Li, R. Gutiérrez, G. Cuniberti, Engineering the figure of merit and thermopower in single-molecule devices connected to semiconducting electrodes, Physical Review B 81 (2010) 235406.
[6] H. Rezania, A. Abdi, Thermal conductivity of disordered AA-stacked bilayer graphene in the presence of bias voltage, The European Physical Journal B 88 (2015) 173.
[7] H. Rezania, M. Yarmohammadi, Dynamical thermal conductivity of bilayer graphene in the presence of bias voltage, Physica E: Low-dimensional Systems and Nanostructures 75 (2016) 125-135.
[8] H. Rezania, A.V. Ghorlivand, Seebeck coefficient and thermal conductivity of doped armchair graphene nanoribbon in the presence of magnetic field, Materials Research Bulletin 9(2018)18-22.
[9] H. Rezania, F. Azizi, The effects of transverse magnetic field and local electronic interaction on thermoelectric properties of monolayer graphene, Solid State Communications 27 (2018)65-71.
[10] M. Saito, Y. Miyamoto, Theoretical identification of the smallest fullerene, C20, Physical review letters 87 (2001) 035503.
[11] E. Malolepsza, H.A. Witek, S. Irle, Comparison of geometric, electronic, and vibrational properties for isomers of small fullerenes C20-C36, The Journal of Physical Chemistry A 111 (2007) 6649-6657.
[12] M. Alcamí, G. Sánchez, S. Díaz-Tendero, Y. Wang, F. Martín, Structural patterns in fullerenes showing adjacent pentagons: C20 to C72, Journal of nanoscience and nanotechnology 7 (2007) 1329-1338.
[13] J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, The SIESTA method for ab initio Order-N materials simulation, Journal of Physics: Condensed Matter 14 (2002) 2745.
[14] M. Brandbyge, J.L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Density-functional method for nonequilibrium electron transport, Physical Review B 65 (2002) 165401.
[15] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Physical review B 13 (1976) 5188.
[16] G. Ji, D. Li, C. Fang, Y. Xu, Y. Zhai, B. Cui, D. Liu, Effect of contact interface configuration on electronic transport in (C20)2-based molecular junctions, Physics Letters A 376 (2012) 773-778.
[17] S. Datta, Electronic transport in mesoscopic systems (Cambridge studies in semiconductor physics and microelectronic engineering), Cambridge University Press 40 (1997) 10011-4211.
[18] C.M. Finch, V.M. Garcia-Suarez, C.J. Lambert, Giant thermopower and figure of merit in single-molecule devices, Physical review b 79 (2009) 033405.
[19] Z. Golsanamlou, S.I. Vishkayi, M.B. Tagani, H.R. Soleimani, Thermoelectric properties of metal/molecule/metal junction for different lengths of polythiophene, Chemical Physics Letters 594 (2014) 51-57.
[20] A. Tan, J. Balachandran, S. Sadat, V. Gavini, B.D. Dunietz, S.Y. Jang, P. Reddy, Effect of length and contact chemistry on the electronic structure and thermoelectric properties of molecular junctions, Journal of the American Chemical Society 133 (2011) 8838-8841.
[21] C. Evangeli, K. Gillemot, E. Leary, M.T. Gonzalez, G. Rubio-Bollinger, C.J. Lambert, N. Agraït, Engineering the thermopower of C60 molecular junctions, Nano letters 13 (2013) 2141-2145.
[22] J.C. Klöckner, R. Siebler, J.C. Cuevas, F. Pauly, Thermal conductance and thermoelectric figure of merit of C60-based single-molecule junctions: electrons, phonons, and photons, physical Review B 95 (2017) 245404.
[23] S.K. Lee, T. Ohto, R. Yamada, H. Tada, Thermopower of benzenedithiol and C60. molecular junctions with Ni and Au electrodes, Nano letters 14 (2014) 5276-5280.
[24] J.A. Malen, S.K. Yee, A. Majumdar, R.A. Segalman, Fundamentals of energy transport, energy conversion, and thermal properties in organic–inorganic heterojunctions, Chemical Physics Letters 491 (2010) 109-122.
[25] J.R. Widawsky, P. Darancet, J.B. Neaton, L. Venkataraman, Simultaneous determination of conductance and thermopower of single molecule junctions, Nano letters 12 (2011) 354-358.
[26] S. Guo, G. Zhou, N. Tao, Single molecule conductance, thermopower, and transition voltage, Nano letters 13 (2013) 4326-4332.