Calculated gluon distribution function by AdS/QCD correspondence

Document Type : Full length research Paper

Abstract

At small Bjorken scaling variable x, dominated Glouns in a hadronic process becomes a color glass
condensate (CGC) and most important principle in this subject is existence of a saturation scale. Then
we can describe unintegrated gluon distribution function according to the saturation scale. In this
study, we want to calculate gluon distribution function with respect of AdS/CFT correspondence. By
using Fourier transform of diploe scattering amplitude, we can extract an analytical formula for the
unintegrated gluon distribution function that inspired from AdS/CFT correspondences. Then our
results compared with does from other parameterization models. These results show that the distribution function behavior tamed at low Bjorken scaling limit.

Keywords


 
[1] M.A. Betemps, V.P. Goncalves, J.T. de Santana, Diffractive deep inelastic scattering in an AdS/CFT inspired model: A phenomenological study,Physical review D: Particles and fields 81 (2017) 263-265.
[2] E. Iancu, K. Itakura, and L. McLerran, Geometric Scaling Above the Saturation Scale, Nuclear Physics A 708 (2016) 327-328.
[3] O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri, Y. Oz, Large N field theories, string theory and gravity, Physics Reports 323 (2000) 183-184.
[4] Y.V. Kovchegov, Unitarization of the BFKL Pomeron on a nucleus, Physical Review D 61 (2015) 18-20.
[5] J.L. Albacete, Y.V. Kovchegov, A. Taliotis, DIS on a Large Nucleus in AdS/CFT, Journal Of High Energy Physics 0807 (2008) 74-75.
[6] G. Watt, H. Kowalski, Impact parameter dependent colour glass condensate dipole model Physical Review D 78 (2008) 14-16.
[7] N. Armesto, Nuclear structure functions at small x in multiple scattering approaches, High Energy Physics Phenomenology (2013) 3-7.
[8] J. Bartels, K. Golec-Biernat, H. Kowalski, Modification of the saturation model: Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution, Physical Review D 66 (2015) 14-17.
[9] M. Block, L. Durand, D.W. McKay, Analytic derivation of the leading-order gluon distribution function G(x,Q2) = xg(x,Q2) from the proton structure function F2 (x,Q2), Physical Review D 77 (2008) 93-94.
[10] M. Glück, E. Reya, A. Vogt, Dynamical parton distributions revisited, The European Physical Journal C 5 (2013) 28-29.

[11] S. Dulat, T.J. Hou,and et all, New parton distribution functions from a global analysis of quantum chromodynamics, Physical Review D 93 (2016) 30-33.
 
Volume 8, Issue 18
October 2018
Pages 137-142
  • Receive Date: 24 November 2016
  • Revise Date: 28 January 2018
  • Accept Date: 27 January 2018