[1] H. Taleb, K. Abedi, S. Golmohammadi, Operation of quantum-dot semiconductor optical amplifiers under nonuniform current injection, Applied Optics50 (2011) 608-617.
[2] K. Sun, M. Vasudev, H.-S. Jung, J. Yang, A. Kar, Y. Li, et al., Applications of colloidal quantum dots, Microelectronics Journal40 (2009) 644-649.
[3] E. Rafailov, M. Cataluna, W. Sibbett, "Mode-locked quantum-dot lasers," Nature Photonics1 (2007) 395-401.
[4] E. Rafailov, P. Loza-Alvarez, W .Sibbett, G. Sokolovskii, D. Livshits, A. Zhukov, et al., Amplification of femtosecond pulses over by18 dB in a quantum-dot semiconductor optical amplifier, IEEE Photonics Technology Letters15 (2003) 1023-1025.
[5] P. Michler, A. Kiraz, C .Becher, W. Schoenfeld, P. Petroff, L. Zhang, et al., A quantum dot single-photon turnstile device, Science 290 (2000) 2282-2285.
[6] T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, et al., Nonlinear gain dynamics in quantum-dot optical amplifiers and its application to optical communication devices, IEEE Journal of Quantum Electronics 37 (2001) 1059-1065.
[7] E.B. Voura, J.K. Jaiswal, H. Mattoussi, S.M. Simon, Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanningmicroscopy, Nature Medicine 10 (2004) 993-998.
[8] I.L. Medintz, H.T. Uyeda, E.R. Goldman, H. Mattoussi, Quantum dot bioconjugates for imaging, labelling and sensing, Nature Materials 4 (2005) 435-446.
[9] W.C. Chan, S. Nie, Quantum dot bioconjugates for ultrasensitive nonisotopic detection, Science 281 (1998) 2016-2018.
[10] I.L. Medintz, H. Mattoussi, Quantum dotbased resonance energy transfer and its growing application in biology, Physical Chemistry Chemical Physics 11 (2009) 17-45.
[11] J.K. Jaiswal, H. Mattoussi, J.M. Mauro, S.M. Simon, Long-term multiple color imaging of live cells using quantum dot bioconjugates, Nature Biotechnology 21 (2003) 47-51.
[12] A. Baskaran, P. Smereka, Mechanisms of Stranski-Krastanov growth, Journal of Applied Physics 111, 044321 (2012).
[13] M. Sabaeian, M. Shahzadeh. Self-assembled strained pyramid-shaped InAs/GaAs quantum dots: The effects of wetting layer thickness on discrete and quasi-continuum levels, Physica E: Low-dimensional Systems and Nanostructures 61, (2014) 62.
[14] D.R. Matthews, H.D. Summers, P.M. Smowton, & M. Hopkinson, Experimental investigation of the effect of wetting-layer states on the gain–current characteristic of quantum-dot lasers. Applied physics letters, 81, (2002) 4904-4906.
[15] Sargent, E. H. (2012). “Colloidal quantum dot solar cells,” Nature Photonics, 6 (3), 133-135.
[16] A. Luque, A. Martí, E. Antolín, and C. Tablero, “Intermediate bands versus levels in non-radiative recombination,” Physica B: Condensed Matter 382, 320 (2006).
[17] J. H. Marsh, D. Bhattacharyya, A. Saher Helmy, E. A. Avrutin, and A. C. Bryce. “Engineering quantum-dot lasers,” Physica E: Low-dimensional Systems and Nanostructures 8, 154 (2000).
[18] M. Sabaeian and M. Shahzadeh, Investigation of in-plane- and z-polarized intersubband transitions in pyramid-shaped InAs/GaAs quantum dots coupled to wetting layer: size and shape matter. Journal of Applied Physics 116 (2014), 043102.
[19] R. Parvizi, "Investigation on the polarized bound-to-continuum intersub-band transitions in the mid-infrared region for InAs quantum dots." Physica B: Condensed Matter 466 (2015): 68-75.
[20] M. Sabaeian, S.A. Hoseini, M. Shahzadeh, I. Kazeminezhad, Investigation of size effect on the emission properties of InAs/GaAs conical-shaped quantum dot lasers, Journal of Research on Many-body Systems 4 8(2015) 55-67.
[21] M. Sabaeian, A. Khaledi-Nasab, Sizedependent intersubband optical properties of dome-shaped InAs/GaAs quantum dots with wetting layer, Applied Optics 51 (2012) 4176-4185.