Structural and optical properties of Fe doped TiO2 nanoparticles

Document Type : Full length research Paper

Authors

1 Department of Physics, Faculty of Natural Science, Kosar University of Bojnord, Bojnord, Iran

2 Department of Physics, Faculty of Natural Science, Kosar University of Bojnord

Abstract

In this work, Fe doped TiO2 nanoparticles at different Fe/Ti molar ratio from 1 to 10% and different annealing temperature from 400 to 800 oC were investigated by X-ray diffraction spectroscopy, transmission electron microscopy (TEM) and diffuse reflectance spectroscopy (DRS). The size of prepared nanoparticles was estimated between 6 to 100 nm by transmission electron microscopy. The characterization by diffuse reflectance spectroscopy revealed that the optical absorption in the visible region significantly increased by doping of TiO2 nanoparticles.. The calculated gap energy by second derivative of Tauc plot demonstrated that the gap energy decreased to 2.5 eV for samples at higher Fe content and annealing temperature.

Keywords

Main Subjects


[1] A.M. Tonejc, I. Djerdi, A. Tonejc, Evidence from HRTEM image processing, XRD and EDS on nanocrystalline iron-doped titanium oxide powders, Materials Science and Engineering B 85 (2001) 55-63.
[2] F.C. Gennari, D.M. Pasquevich, Kinetics of the anatase–rutile transformation in TiO2 in the presence of Fe2O3, Journal of Materials Science 33 (1998) 1571-1578.
[3] Y. Zhang, Y. Shen, F. Gu, M. Wu, Y. Xie, J. Zhang, Influence of Fe ions in characteristics and optical properties of mesoporous titanium oxide thin films, Applied Surface Science 256 (2009) 85-89.
[4] R. Alexandrescu, I. Morjan, M. Scarisoreanu, R. Birjega, E. Popovici, I. Soare, L. Gavrila-Florescu, V.I. Sandu, F. Dumitrache, G. Prodan, E. Vasile, E. Figgemeier, Structural investigations on TiO2 and Fe-doped TiO2 nanoparticles synthesized by laser pyrolysis, Thin Solid Films 515 (2007) 8438-8445.
[5] J.H. Jho, D.H. Kim, S.-J. Kim, K.S. Lee, Synthesis and photocatalytic property of a mixture of anatase and rutile TiO2 doped with Fe by mechanical alloying process, Journal of Alloys and Compounds 459 (2008) 386-389.
[6] K. Melghit, O.S. Al-Shukeilia, I. Al-Amri, Effect of M-doping (M = Fe, V) on the photocatalytic activity of nanorod rutile TiO2 for Congo red degradation under the sunlight, Ceramics International 35 (2009) 433-439.
[7] M. Hirano, T. Joji, M. Inagaki, H. Iwata, Direct formation of iron (III)-doped titanium oxide (anatase) by thermal hydrolysis and its structure property, Journal of American Ceramic Society 87 (1) (2004) 35-41.
[8] T. Tong, J. Zhang, B. Tian, F. Chen, D. He, Preparation of Fe3+-doped TiO2 catalysts by controlled hydrolysis of titanium alkoxide and study on their photocatalytic activity for methyl orange degradation, Journal of Hazardous Materials 155 (2008) 572-579.
[9] Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S.Y. Koshihara, H. Koinuma, Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide, Science 291 (2001) 854-856.
[10] G. Talut, H. Reuther, J. Grenzer, S. Zhou, Origin of ferromagnetism in iron implanted rutile single crystals, Hyperfine Interactaction 191 (2009) 95-102.
[11] M. Yeganeh, N. Shahtahmasebi, A. Kompany, M. Karimipour, F. Razavi, N.H.S. Nasralla, L. Šiller, The magnetic characterization of Fe doped TiO2 semiconducting oxide nanoparticles synthesized by sol–gel method, Physica B 511 (2017) 89-98.
[12] C. Adan, A. Bahamonde, M. Fernandez-Garcia, A. Martines-Arias, Structure and activity of nanosized iron-doped anatase TiO2 catalysts for phenol photocatalytic degradation, Applied Catalysis B: Environmental 72 (2007) 11-17.
[13] N.C. Khang, N.V. Khanh, N.H. Anh, D.T. Nga, N.V. Minh, The origin of visible light photocatalytic activity of N-doped and weak ferromagnetism of Fe-doped TiO2 anatase, Adcances in Natural Sciences: Nanoscience and Nanothechnology 2 (2011) 015008 (4pp(.
[14] Q. Wu, Q. Zheng, R. Krol, Creating oxygen vacancies as a novel strategy to form tetrahedrally coordinated Ti4+ in Fe/TiO2 nanoparticles, Journal of Physical Chemistry C 116 (2012) 7219-7226.
[15] I. Ganesh, P.P. Kumar, A.K. Gupta, P.S.C. Sekhar, K. Radha, G. Padmanabham, G. Sundararajan, Preparation and characterization of Fe-doped TiO2 powders for solar light response and photocatalytic applications, Processing and Application of Ceramics 6 (2012) 21-36.
[16] R.A. Spurr, H. Myers, Quantitative analysis of anatase-rutile mixture with an X-ray difractometer, Analytical Chemistry 29 (1957) 762-769.
[17] H. Zhang, J.F. Banfield, Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2, Journal of Physical Chemistry B 104 (2000) 3481-3487.
[18] Q. Chen, H. Liu, Y. Xin, X. Cheng,  TiO2 nanobelts – Effect of calcination temperature on optical, photoelectrochemical and photocatalytic properties, Electrochimica Acta 111 (2013) 284-291.
[19] K. Nagaveni, M.S. Hegde, G. Madras, Structure and Photocatalytic Activity of Ti1-xMxO2±δ (M=W, V, Ce, Zr, Fe, and Cu) Synthesized by Solution Combustion Method, Journal of Physical Chemistry B. 108 (2004) 20204-201212.
[20] M. Xing, Y. Wu, J. Zhang, F. Chen, Effect of synergy on the visible light activityof B, N and Fe co-doped TiO2 for the degradation of MO, Nanoscale 2 (2010) 1233-1239.