[1] A.M. Tonejc, I. Djerdi, A. Tonejc, Evidence from HRTEM image processing, XRD and EDS on nanocrystalline iron-doped titanium oxide powders,
Materials Science and Engineering B 85 (2001) 55-63.
[3] Y. Zhang, Y. Shen, F. Gu, M. Wu, Y. Xie, J. Zhang, Influence of Fe ions in characteristics and optical properties of mesoporous titanium oxide thin films, Applied Surface Science 256 (2009) 85-89.
[4] R. Alexandrescu, I. Morjan, M. Scarisoreanu, R. Birjega, E. Popovici, I. Soare, L. Gavrila-Florescu, V.I. Sandu, F. Dumitrache, G. Prodan, E. Vasile, E. Figgemeier, Structural investigations on TiO2 and Fe-doped TiO2 nanoparticles synthesized by laser pyrolysis, Thin Solid Films 515 (2007) 8438-8445.
[5] J.H. Jho, D.H. Kim, S.-J. Kim, K.S. Lee, Synthesis and photocatalytic property of a mixture of anatase and rutile TiO2 doped with Fe by mechanical alloying process, Journal of Alloys and Compounds 459 (2008) 386-389.
[6] K. Melghit, O.S. Al-Shukeilia, I. Al-Amri, Effect of M-doping (M = Fe, V) on the photocatalytic activity of nanorod rutile TiO2 for Congo red degradation under the sunlight, Ceramics International 35 (2009) 433-439.
[7] M. Hirano, T. Joji, M. Inagaki, H. Iwata, Direct formation of iron (III)-doped titanium oxide (anatase) by thermal hydrolysis and its structure property, Journal of American Ceramic Society 87 (1) (2004) 35-41.
[8] T. Tong, J. Zhang, B. Tian, F. Chen, D. He, Preparation of Fe3+-doped TiO2 catalysts by controlled hydrolysis of titanium alkoxide and study on their photocatalytic activity for methyl orange degradation, Journal of Hazardous Materials 155 (2008) 572-579.
[9] Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S.Y. Koshihara, H. Koinuma, Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide, Science 291 (2001) 854-856.
[10] G. Talut, H. Reuther, J. Grenzer, S. Zhou, Origin of ferromagnetism in iron implanted rutile single crystals, Hyperfine Interactaction 191 (2009) 95-102.
[11] M. Yeganeh, N. Shahtahmasebi, A. Kompany, M. Karimipour, F. Razavi, N.H.S. Nasralla, L. Šiller, The magnetic characterization of Fe doped TiO2 semiconducting oxide nanoparticles synthesized by sol–gel method, Physica B 511 (2017) 89-98.
[12] C. Adan, A. Bahamonde, M. Fernandez-Garcia, A. Martines-Arias, Structure and activity of nanosized iron-doped anatase TiO2 catalysts for phenol photocatalytic degradation, Applied Catalysis B: Environmental 72 (2007) 11-17.
[13] N.C. Khang, N.V. Khanh, N.H. Anh, D.T. Nga, N.V. Minh, The origin of visible light photocatalytic activity of N-doped and weak ferromagnetism of Fe-doped TiO2 anatase, Adcances in Natural Sciences: Nanoscience and Nanothechnology 2 (2011) 015008 (4pp(.
[14] Q. Wu, Q. Zheng, R. Krol, Creating oxygen vacancies as a novel strategy to form tetrahedrally coordinated Ti4+ in Fe/TiO2 nanoparticles, Journal of Physical Chemistry C 116 (2012) 7219-7226.
[15] I. Ganesh, P.P. Kumar, A.K. Gupta, P.S.C. Sekhar, K. Radha, G. Padmanabham, G. Sundararajan, Preparation and characterization of Fe-doped TiO2 powders for solar light response and photocatalytic applications, Processing and Application of Ceramics 6 (2012) 21-36.
[16] R.A. Spurr, H. Myers, Quantitative analysis of anatase-rutile mixture with an X-ray difractometer, Analytical Chemistry 29 (1957) 762-769.
[17] H. Zhang, J.F. Banfield, Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2, Journal of Physical Chemistry B 104 (2000) 3481-3487.
[18] Q. Chen, H. Liu, Y. Xin, X. Cheng, TiO2 nanobelts – Effect of calcination temperature on optical, photoelectrochemical and photocatalytic properties, Electrochimica Acta 111 (2013) 284-291.
[19] K. Nagaveni, M.S. Hegde, G. Madras, Structure and Photocatalytic Activity of Ti1-xMxO2±δ (M=W, V, Ce, Zr, Fe, and Cu) Synthesized by Solution Combustion Method, Journal of Physical Chemistry B. 108 (2004) 20204-201212.
[20] M. Xing, Y. Wu, J. Zhang, F. Chen, Effect of synergy on the visible light activityof B, N and Fe co-doped TiO2 for the degradation of MO, Nanoscale 2 (2010) 1233-1239.