[1] K. von Klitzing, G. Dorda, M. Pepper, New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance, Physical Review Letters 45(1980) 494.
[2] D.J. Thouless, M. Kohmoto, M.P. Nightingale, M.D. Nijs, Quantized Hall Conductance in a Two-Dimensional Periodic Potential, Physical Review Letters 49 (1982) 405.
[3] M. Konig, S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L.W. Molenkamp, X.L. Qi, S.C. Zhang, Quantum spin hall insulator state in HgTe quantum wells, Science 318 (2007) 766.
[4] J.E. Moore, Perspective Article The birth of topological insulators, Nature (London). 464 (2010) 194.
[5] T. Oka, H. Aoki, Photovoltaic Hall effect in graphene, Physical Review B 79 (2009) 081406.
[6] N.H. Lindner, G. Refael, V. Galitski, Floquet topological insulator in semiconductor quantum wells, Nature Physics 7 (2011) 490.
[7] A.P. Schnyder, S. Ryu, A. Furusaki, A.W.W. Ludwig, Classification of topological insulators and superconductors in three spatial dimensions, Physical Review B 78 (2008) 195125.
[8] A.Y. Kitaev, Periodic table for topological insulator and superconductors, AIP Conference Proceedings 1134 (2009) 22-30.
[9] T. Kitagawa, M.S. Rudner, E. Berg, E. Demler, Exploring topological phases with quantum walks, Physical Review A 82 (2010) 033429.
[10] Z. Gu, H.A. Fertig, D.P. Arovas, and A. Auerbach,Spin Pumping by Parametrically Excited Exchange Magnons, Physical Review Letters 107 (2011) 216601.
[11] L. Fu, C.L. Kane, Time reversal polarization and a Z2 adiabatic spin pump, Physical Review B 74 (2006) 195312.
[12] R. Shindou,Quantum Spin Pump in S=1/2 antiferromagnetic chains -Holonomy of phase operators in sine-Gordon theory, Journal of Physics Society of Japan 74 (2005) 1214.
[13] D.J. Thouless, Quantization of particle transport, Physical Review B 27 (1983) 6083.
[14] Q. Niu and D.J. Thouless, Quantised adiabatic charge transport in the presence of substrate disorder and many-body interaction, Journal of Physics A 17 (1984) 2453.
[15] J-I. Inoue, A. Tanaka, Photoinduced transition between conventional and topological insulators in two-dimensional electronic systems, Physical Review Letters 105 (2010) 017401.
[16] A. Gómez-León, G. Platero, Floquet-Bloch theory and topology in periodically driven lattices, Physical Review Letters 110 (2013) 200403.
[19] H. Sambe, Steady States and Quasienergies of a Quantum-Mechanical System in an Oscillating Field, Physical Review A7 (1973) 2203.
[17] J.H. Shirley, Solution of the Schrödinger Equation with a Hamiltonian Periodic in Time, Physical Review B 138 (1965) 974.
[18] W.R. Salzman, Quantum mechanics of systems periodic in time, Physical Review A 10 (1974) 461.
[20] D. Xiao, M.C. Chang, Q. Niu, Berry phase effects on electronic properties, Reviews of Modern Physics 82 (2010) 1959.
[21] S.-Q.- Shen, Topological Insulators, Hong Kong, China, (2012).
[22]T. Morimoto, A. Furusaki, Topological classification with additional symmetries from Clifford algebras,Physical Review B88 (2013) 125129.
[23] V. Dal Lago, M. Atala, L.E.F. Foa Torres, Floquet topological transitions in a driven one-dimensional topological insulator,Physical Review A92 (2015) 023624.
[24] J.K. Asboth, B. Tarasinski, P. Delplace, Chiral symmetry and bulk-boundary correspondence in periodically driven one-dimensional systems, Physical Review B 90 (2014) 125143.