[1] N. Memariyani, M. Omrani, M. Minbashi, Efficiency improvement of solar cell of heterogeneous silicone with gallium intrinsic layer, Journal of research of particle systems, 14 (2017) 103-112.
[2] I. Firozi, I. Mohammadi, Designing of nanoplasmonic solar cells based on excitation optical mods of inside the cell, Journal of research of particle systems ,15 (2017) 89-102.
[3] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens , L. M. Herz, A. Petrozza, H. J. Snaith, Electron-Hole Diffusion Lengths Exceeding1 Micrometer in an Organometal Trihalide Perovskite Absorber, Science, 342 (2013) 342-341.
[4] H. Oga, A.Saeki, Y. Ogomi, S. Hayase, S. Seki, Improved understanding of the electronic and energetic landscapes of perovskite solar cells: high local charge carrier mobility, reduced recombination, and extremely shallow traps, J Am Chem, Soc, 136 (2014) 13818-13825.
[5] J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S. Seok, Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells, Nature Mater, 9 (2014) 897-903.
[6] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light Sensitizers for photovoltaic cells, J Am Chem Soc, 131 (2009) 6050–6051.
[7] J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, N. G. Park, 6.5% Efficient Perovskite Quantum- Dot-Sensitized Solar Cell, Nanoscale, 3 (2011) 4088-4093.
[8] H. S. Kim, C. R. Lee, J. H. Im, T. Moehl, A. Marchioro, S. J. Moon, R. B. Humphry, J. H. Yum, J. E. Moser, M. Grätzel, N. G. Park, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Sci Rep, 2 (2012) 591-596.
[9] National Renewable Energy Laboratory, Best Research-Cell Efficiencies chart: www.nrel.gov/ncpv/images/efficiency_chart.jpg.
[10] N. J. Jeon, J. H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, S. L. Seok, Compositional engineering of perovskite materials for high-performance solar cells, Nature, 517 (2015) 476–480.
[11] M. Saliba, S. Orlandi, T. Matsui, S. Aghazada, M. Cavazzini, J. P. Correa-Baena, P. Gao, R. Scopelliti, E. Mosconi, K. H. Dahmen, F. De Angelis, A. Abate, A. Hagfeldt, G. Pozzi, M. Graetzel, A molecularly engineered hole-transporting material for efficient perovskite solar cells, Nature Energy,15017 (2016) 1.doi.org /10.1038/nenergy.2015.17
[12] X. Li, D. Bi, C. Yi, J. D. Décoppet, J. Luo, S. M. Zakeeruddin, A. Hagfeldt, M. Grätzel, A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells, Science,353 (2016) 58–62 .
[13] H. Choi, J. Jeong, H. B. Kim, S. Kim, B. Walker, G. H. Kim, G. Y. Kim, Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells, Nano Energy,7 (2014) 80–85.
[14] J.W. Lee, D. H. Kim, H. S. Kim, S. W. Seo, S. M. Cho, N. G. Park, Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell, AdV Energy Mater,5 (2015) 1310.
[15] C. Yi, J. Luo, S. Meloni, A. Boziki, N. Ashari-Astani, C. Grätzel, S. M. Zakeeruddin, U. Röthlisberger, M. Grätzel, Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells, Energy Environ, Science, 9 (2016) 656–662.
[16] Z. Li, M. Yang, J. S. Park, S. H. Wei, J. J. Berry ,K. Zhu, Stabilizing perovskite structures by tuning tolerance factor: Formation of formamidinium and cesium lead iodide solid-state alloys, Chem Mater,28 (2016) 284–292.
[17] M. Saliba, T. Matsui, J. Y. Seo, K. Domanski, J. P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency, Energy Environ,Science, 9 (2016) 1989–1997.
[18]F. Hao, C. C. Stoumpos, D. H. Cao,R. P. H. Chang, M. G. Kanatzidis, Perovskite photonic sources, Nat Photonics, 8 ( 2014) 489-494.
[19] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, Electro-optics of perovskite solar cells, Science, 342 ( 2013) 341-344.
[20] Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Electron-Hole Diffusion Lengths, Science, 347 (2015) 967-970.
[21] N.J. Jeon, J. Noh, W.S. Yang, Y.C. Kim, J. Soe, Compositional engineering of perovskite materials for high-performance solar cells, Nature, 517 (2015) 476–480.
[22] J.W. Lee, J. Brabec, Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell, Adv Energy Mater, 5 (2015) 1501310.
[23] M. Kulbak, D. Cahen, J. Hodes, How important is the organic part of lead halides, J Phys Chem Lett, 6 (2015) 2452-2456.
[24] C.K. Moller, Lead Halide Perovskite Nanocreystal in the Research, Nature, 182 (1958)1436-1436.
[25] Y. Bekenstein, B. A. Koscher, S. W. Eaton, P. Yang, A. P. Alivisatos, Ultrathin Colloidal Cesium Lead Halide Perovskite Nanowire, J Am Chem Soc, 137 (2015) 16008-16011.
[26] N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, S. L. Seok, Compositional engineering of perovskite materials for high-performance solar cells, Nature, 517 (2015) 476-480.
[27] N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, S. L. Seok, Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells, Nature Material, 13 (2015) 897-903.
[28] H. Choi, J. Jeong, H. B. Kim, S. Kim, B. Walker, G. H. Kim, J. Y. Kim, Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells, Nano Energy, 7 (2014) 80-85.
[29] Z. Li, M. Yang, J. S. Park, S. H. Wei, J. J. Berry, K. Zhu, Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys, Chemistry of Materials, 28 (2016 ) 284-292.
[30] V. M. Goldschmidt, Goldshmidt tolerance factor, Die Nature wissenschaften, 14 (1926)477-485.
[31] H. L. Wells, S. Schunemann, S. Brittman, K. Chen, Z. Anorg, Halide Perovskite 3D Photonic Crystals for Distributed Feedback Lasers, Chem, 4 (2017) 2522-2528.
[32]D. B. Mitzi, K. Liang, Synthesis resistivity and thermal properties of the cubic perovskite NH2CH=NH2SnI3 and related systems, J Solid State Chem, 134 (1997) 376–381.
[33] G. Kieslich, S. J. Sun, A.K. Cheetham, Solid-state principles applied to organic-inorganic perovskites: New tricks for an old dog, Chem Science, 5 (2014) 4712–4715.
[34]F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang, M. G. Kanatzidis, Lead-free solid-state organic-inorganic halide perovskite solar cells, Nature Photonics,8 (2014) 489–494.
[35] M. Saliba, T. Matsui, K. Domanski, J. I. YouanSeo, A. Ummadisingu, M. Gratzel, Incorporation of Rubidium Cation Perovskite Solar Cells Improves Photovoltaic Performance, Science, 354 (2016) 206-209.
[36] Z. Li, M. Yang, J. S. Park, S. H. Wei, J. J. Berry, K. Zhu, Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys, Chemistry of Materials, 28 (2016) 284-292.
[37]C. Yi, J. Luo, S. Meloni, A. Boziki, N. Ashari-Astani, C. Gratzel, S. M. Zakeeruddin, U. Rothlisberger, M. Gratzel, Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells, Energy Environ Science, 9 ( 2016) 656-662.
[38]J. W. Lee, D. H. Kim, H. S. Kim, S. W. Seo, S. M. Cho, N. G. Park, Formamidinium and Cesium Hybridization for Photo‐and Moisture‐Stable Perovskite Solar Cell, Adv Energy Mater, 5 ( 2015) 255-265.
[39] S. Agarwal, P. R. Nair, Pinhole efficiency variation in perovskite solar cells, Applied physics, 22 (2017) 163104. doi.org/10.1063/1.4996315.
[1] N. Memariyani, M. Omrani, M. Minbashi, Efficiency improvement of solar cell of heterogeneous silicone with gallium intrinsic layer, Journal of research of particle systems, 14 (2017) 103-112.
[2] I. Firozi, I. Mohammadi, Designing of nanoplasmonic solar cells based on excitation optical mods of inside the cell, Journal of research of particle systems ,15 (2017) 89-102.
[3] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens , L. M. Herz, A. Petrozza, H. J. Snaith, Electron-Hole Diffusion Lengths Exceeding1 Micrometer in an Organometal Trihalide Perovskite Absorber, Science, 342 (2013) 342-341.
[4] H. Oga, A.Saeki, Y. Ogomi, S. Hayase, S. Seki, Improved understanding of the electronic and energetic landscapes of perovskite solar cells: high local charge carrier mobility, reduced recombination, and extremely shallow traps, J Am Chem, Soc, 136 (2014) 13818-13825.
[5] J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S. Seok, Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells, Nature Mater, 9 (2014) 897-903.
[6] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light Sensitizers for photovoltaic cells, J Am Chem Soc, 131 (2009) 6050–6051.
[7] J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, N. G. Park, 6.5% Efficient Perovskite Quantum- Dot-Sensitized Solar Cell, Nanoscale, 3 (2011) 4088-4093.
[8] H. S. Kim, C. R. Lee, J. H. Im, T. Moehl, A. Marchioro, S. J. Moon, R. B. Humphry, J. H. Yum, J. E. Moser, M. Grätzel, N. G. Park, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Sci Rep, 2 (2012) 591-596.
[9] National Renewable Energy Laboratory, Best Research-Cell Efficiencies chart: www.nrel.gov/ncpv/images/efficiency_chart.jpg.
[10] N. J. Jeon, J. H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, S. L. Seok, Compositional engineering of perovskite materials for high-performance solar cells, Nature, 517 (2015) 476–480.
[11] M. Saliba, S. Orlandi, T. Matsui, S. Aghazada, M. Cavazzini, J. P. Correa-Baena, P. Gao, R. Scopelliti, E. Mosconi, K. H. Dahmen, F. De Angelis, A. Abate, A. Hagfeldt, G. Pozzi, M. Graetzel, A molecularly engineered hole-transporting material for efficient perovskite solar cells, Nature Energy,15017 (2016) 1.doi.org /10.1038/nenergy.2015.17
[12] X. Li, D. Bi, C. Yi, J. D. Décoppet, J. Luo, S. M. Zakeeruddin, A. Hagfeldt, M. Grätzel, A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells, Science,353 (2016) 58–62 .
[13] H. Choi, J. Jeong, H. B. Kim, S. Kim, B. Walker, G. H. Kim, G. Y. Kim, Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells, Nano Energy,7 (2014) 80–85.
[14] J.W. Lee, D. H. Kim, H. S. Kim, S. W. Seo, S. M. Cho, N. G. Park, Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell, AdV Energy Mater,5 (2015) 1310.
[15] C. Yi, J. Luo, S. Meloni, A. Boziki, N. Ashari-Astani, C. Grätzel, S. M. Zakeeruddin, U. Röthlisberger, M. Grätzel, Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells, Energy Environ, Science, 9 (2016) 656–662.
[16] Z. Li, M. Yang, J. S. Park, S. H. Wei, J. J. Berry ,K. Zhu, Stabilizing perovskite structures by tuning tolerance factor: Formation of formamidinium and cesium lead iodide solid-state alloys, Chem Mater,28 (2016) 284–292.
[17] M. Saliba, T. Matsui, J. Y. Seo, K. Domanski, J. P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency, Energy Environ,Science, 9 (2016) 1989–1997.
[18]F. Hao, C. C. Stoumpos, D. H. Cao,R. P. H. Chang, M. G. Kanatzidis, Perovskite photonic sources, Nat Photonics, 8 ( 2014) 489-494.
[19] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, Electro-optics of perovskite solar cells, Science, 342 ( 2013) 341-344.
[20] Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Electron-Hole Diffusion Lengths, Science, 347 (2015) 967-970.
[21] N.J. Jeon, J. Noh, W.S. Yang, Y.C. Kim, J. Soe, Compositional engineering of perovskite materials for high-performance solar cells, Nature, 517 (2015) 476–480.
[22] J.W. Lee, J. Brabec, Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell, Adv Energy Mater, 5 (2015) 1501310.
[23] M. Kulbak, D. Cahen, J. Hodes, How important is the organic part of lead halides, J Phys Chem Lett, 6 (2015) 2452-2456.
[24] C.K. Moller, Lead Halide Perovskite Nanocreystal in the Research, Nature, 182 (1958)1436-1436.
[25] Y. Bekenstein, B. A. Koscher, S. W. Eaton, P. Yang, A. P. Alivisatos, Ultrathin Colloidal Cesium Lead Halide Perovskite Nanowire, J Am Chem Soc, 137 (2015) 16008-16011.
[26] N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, S. L. Seok, Compositional engineering of perovskite materials for high-performance solar cells, Nature, 517 (2015) 476-480.
[27] N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, S. L. Seok, Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells, Nature Material, 13 (2015) 897-903.
[28] H. Choi, J. Jeong, H. B. Kim, S. Kim, B. Walker, G. H. Kim, J. Y. Kim, Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells, Nano Energy, 7 (2014) 80-85.
[29] Z. Li, M. Yang, J. S. Park, S. H. Wei, J. J. Berry, K. Zhu, Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys, Chemistry of Materials, 28 (2016 ) 284-292.
[30] V. M. Goldschmidt, Goldshmidt tolerance factor, Die Nature wissenschaften, 14 (1926)477-485.
[31] H. L. Wells, S. Schunemann, S. Brittman, K. Chen, Z. Anorg, Halide Perovskite 3D Photonic Crystals for Distributed Feedback Lasers, Chem, 4 (2017) 2522-2528.
[32]D. B. Mitzi, K. Liang, Synthesis resistivity and thermal properties of the cubic perovskite NH2CH=NH2SnI3 and related systems, J Solid State Chem, 134 (1997) 376–381.
[33] G. Kieslich, S. J. Sun, A.K. Cheetham, Solid-state principles applied to organic-inorganic perovskites: New tricks for an old dog, Chem Science, 5 (2014) 4712–4715.
[34]F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang, M. G. Kanatzidis, Lead-free solid-state organic-inorganic halide perovskite solar cells, Nature Photonics,8 (2014) 489–494.
[35] M. Saliba, T. Matsui, K. Domanski, J. I. YouanSeo, A. Ummadisingu, M. Gratzel, Incorporation of Rubidium Cation Perovskite Solar Cells Improves Photovoltaic Performance, Science, 354 (2016) 206-209.
[36] Z. Li, M. Yang, J. S. Park, S. H. Wei, J. J. Berry, K. Zhu, Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys, Chemistry of Materials, 28 (2016) 284-292.
[37]C. Yi, J. Luo, S. Meloni, A. Boziki, N. Ashari-Astani, C. Gratzel, S. M. Zakeeruddin, U. Rothlisberger, M. Gratzel, Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells, Energy Environ Science, 9 ( 2016) 656-662.
[38]J. W. Lee, D. H. Kim, H. S. Kim, S. W. Seo, S. M. Cho, N. G. Park, Formamidinium and Cesium Hybridization for Photo‐and Moisture‐Stable Perovskite Solar Cell, Adv Energy Mater, 5 ( 2015) 255-265.
[39] S. Agarwal, P. R. Nair, Pinhole efficiency variation in perovskite solar cells, Applied physics, 22 (2017) 163104. doi.org/10.1063/1.4996315.