[2] V. Galstyan, E. Comini, G. Faglia, G. Sberveglieri, TiO2 Nanotubes: Recent Advances in Synthesis and Gas Sensing Properties, Sensors 13 (2013) 14813-14838.
[3] M. Pelaez Miguel, et al, A review on the visible light active titanium dioxide photocatalysts for environmental applications, Applied Catalysis B: Environmental 125 (2012) 331-349.
[4] C.F. Goodeve, J.A. Kitchener, The mechanism of photosensitisation by solids, Transactions of the Faraday Society 34 (1938) 902-908.
[5] H. Ou, S. Lo, Review of titania nanotubes synthesized via the hydrothermal treatment: fabrication, modification, and application, Separation and Purification Technology 58 (2007) 179-191.
[6] J. Huusko, V. Lantto, H. Torvela, TiO2 thick-film gas sensors and their suitability for NOx monitoring, Sensors and Actuators B: Chemical 16 (1993) 245-248.
[7] A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chemical reviews 95 (1995) 735-758.
[8] S.Y. Huang, L. Kavan, I. Exnar, M. Graetzel, Rocking chair lithium battery based on nanocrystalline TiO2 (anatase), Journal of the Electrochemical Society 142 (1995) 142-144.
[9] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T.Watanabe, Light-induced amphiphilic surfaces, Nature 388 (1997) 431.
[10] K. Satake, A. Katayama, H. Ohkoshi, T. Nakahara, T. Takeuchi, Titania NOx sensors for exhaust monitoring, Sensors and Actuators B: Chemical 20 (1994) 111-117.
[11] H. Gerischer, Electrochemical photo and solar cells principles and some experiments, Electrochimica Acta 40 (1975) 263-274.
[12] S.V. Nair, A. Balakrishnan, K.R.V. Subramanian, A.M. Anu, A.M. Asha, B. Deepika, Effect of TiO2 nanotube length and lateral tubular spacing on photovoltaic properties of back illuminated dye sensitized solar cell, Bulletin of Materials Science 35 (2012) 489-493.
[13] K. Zhu, N.R. Neale, A. Miedaner, A.J. Frank, Enhanced Charge-Collection Efficiencies and Light Scattering in Dye-Sensitized Solar Cells Using Oriented TiO2 Nanotubes Arrays, Nano Lett. 7 (2007) 69-74.
[14] Y. Aoyama, Y. Oaki, R.Ise, H. Imai, Mesocrystal nanosheet of rutile TiO 2 and its reaction selectivity as a photocatalyst, Cryst Eng Comm, 14 (2012) 1405-1411.
[15] F. Tian, Y. Zhang, J. Zhang, Ch. Pan, Raman Spectroscopy: A New Approach to Measure the Percentage of Anatase TiO2 Exposed (001) Facets, J. Phys. Chem. C, 116 (2012) 7515-7519.
[16] Z.H. Chen, Y.B. Tang, C.P. Liu, Y.H. Leung, G.D. Yuan, L.M.Chen, Y.Q. Wang, I. Bello, J.A. Zapien, W.J. Zhang, C.S. Lee, S.T. Lee, Vertically aligned ZnO nanorod arrays sentisized with gold nanoparticles for Schottky barrier photovoltaic cells, The Journal of Physical Chemistry C 113 (2009) 13433-13437.
[17] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F.Kim, H. Yan, One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications, Advanced materials 15 (2003) 353-389.
[18] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Formation of titanium oxide nanotube, Langmuir 14 (1998) 3160-3163.
[19] B. O’Regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353 (1991) 737.
[20] A. Ghicov, P. Schmuki, Self-ordering electrochemistry: a review on growth and functionality of TiO 2 nanotubes and other self-aligned MO x structures, Chemical Communications (2009) 2791-2808.
[21] J. M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, P. Schmuki, TiO2 nanotubes: Self-organized electrochemical formation, properties and applications, Current Opinion in Solid State and Materials Science 11 (2007) 3-18.
[22] M. S. Sander, M. J. Cote, W. Gu, B. M. Kile, C. P. Tripp, Template‐assisted fabrication of dense, aligned arrays of titania nanotubes with well‐controlled dimensions on substrates, Advanced Materials 16 (2004) 2052-2057.
[23] J.M. Macak, H. Tsuchiya, P. Schmuki, Smooth Anodic TiO2 Nanotubes, Angewandte Chemie International Edition 44 (2005) 210-2102.
[24] D. Wood, J. Tauc, Weak absorption tails in amorphous semiconductors, Physical Review B 5 (1972) 3144.
[2] V. Galstyan, E. Comini, G. Faglia, G. Sberveglieri, TiO2 Nanotubes: Recent Advances in Synthesis and Gas Sensing Properties, Sensors 13 (2013) 14813-14838.
[3] M. Pelaez Miguel, et al, A review on the visible light active titanium dioxide photocatalysts for environmental applications, Applied Catalysis B: Environmental 125 (2012) 331-349.
[4] C.F. Goodeve, J.A. Kitchener, The mechanism of photosensitisation by solids, Transactions of the Faraday Society 34 (1938) 902-908.
[5] H. Ou, S. Lo, Review of titania nanotubes synthesized via the hydrothermal treatment: fabrication, modification, and application, Separation and Purification Technology 58 (2007) 179-191.
[6] J. Huusko, V. Lantto, H. Torvela, TiO2 thick-film gas sensors and their suitability for NOx monitoring, Sensors and Actuators B: Chemical 16 (1993) 245-248.
[7] A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chemical reviews 95 (1995) 735-758.
[8] S.Y. Huang, L. Kavan, I. Exnar, M. Graetzel, Rocking chair lithium battery based on nanocrystalline TiO2 (anatase), Journal of the Electrochemical Society 142 (1995) 142-144.
[9] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T.Watanabe, Light-induced amphiphilic surfaces, Nature 388 (1997) 431.
[10] K. Satake, A. Katayama, H. Ohkoshi, T. Nakahara, T. Takeuchi, Titania NOx sensors for exhaust monitoring, Sensors and Actuators B: Chemical 20 (1994) 111-117.
[11] H. Gerischer, Electrochemical photo and solar cells principles and some experiments, Electrochimica Acta 40 (1975) 263-274.
[12] S.V. Nair, A. Balakrishnan, K.R.V. Subramanian, A.M. Anu, A.M. Asha, B. Deepika, Effect of TiO2 nanotube length and lateral tubular spacing on photovoltaic properties of back illuminated dye sensitized solar cell, Bulletin of Materials Science 35 (2012) 489-493.
[13] K. Zhu, N.R. Neale, A. Miedaner, A.J. Frank, Enhanced Charge-Collection Efficiencies and Light Scattering in Dye-Sensitized Solar Cells Using Oriented TiO2 Nanotubes Arrays, Nano Lett. 7 (2007) 69-74.
[14] Y. Aoyama, Y. Oaki, R.Ise, H. Imai, Mesocrystal nanosheet of rutile TiO 2 and its reaction selectivity as a photocatalyst, Cryst Eng Comm, 14 (2012) 1405-1411.
[15] F. Tian, Y. Zhang, J. Zhang, Ch. Pan, Raman Spectroscopy: A New Approach to Measure the Percentage of Anatase TiO2 Exposed (001) Facets, J. Phys. Chem. C, 116 (2012) 7515-7519.
[16] Z.H. Chen, Y.B. Tang, C.P. Liu, Y.H. Leung, G.D. Yuan, L.M.Chen, Y.Q. Wang, I. Bello, J.A. Zapien, W.J. Zhang, C.S. Lee, S.T. Lee, Vertically aligned ZnO nanorod arrays sentisized with gold nanoparticles for Schottky barrier photovoltaic cells, The Journal of Physical Chemistry C 113 (2009) 13433-13437.
[17] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F.Kim, H. Yan, One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications, Advanced materials 15 (2003) 353-389.
[18] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Formation of titanium oxide nanotube, Langmuir 14 (1998) 3160-3163.
[19] B. O’Regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353 (1991) 737.
[20] A. Ghicov, P. Schmuki, Self-ordering electrochemistry: a review on growth and functionality of TiO 2 nanotubes and other self-aligned MO x structures, Chemical Communications (2009) 2791-2808.
[21] J. M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, P. Schmuki, TiO2 nanotubes: Self-organized electrochemical formation, properties and applications, Current Opinion in Solid State and Materials Science 11 (2007) 3-18.
[22] M. S. Sander, M. J. Cote, W. Gu, B. M. Kile, C. P. Tripp, Template‐assisted fabrication of dense, aligned arrays of titania nanotubes with well‐controlled dimensions on substrates, Advanced Materials 16 (2004) 2052-2057.
[23] J.M. Macak, H. Tsuchiya, P. Schmuki, Smooth Anodic TiO2 Nanotubes, Angewandte Chemie International Edition 44 (2005) 210-2102.
[24] D. Wood, J. Tauc, Weak absorption tails in amorphous semiconductors, Physical Review B 5 (1972) 3144.