Physical properties of TiO2 nanostructures grown by anodize and chemical vapor deposition methods

Document Type : Full length research Paper

Authors

Tehran, Iran

Abstract

In this paper TiO2 Nanostructures with two different morphologies of naosheet and nanotube are synthesized using chemical vapor deposition and anodize methods. Physical properties of these structures such as morphological, structural and optical are studied using field emission scanning electron microscopy (FESEM), X-ray diffractometer (XRD) and Diffusive reflection spectroscopy (DRS). It is found that TiO2 structures with two different morphologies of nanosheets and nanotubes lead to different optical responses which makes TiO2 nanostructures promissing candidate for possible applications. Therefore, morphological control is obtained using optimum experimental conditions with two different methods, which leads to achieving TiO2 nanostructures with desired physical properties.

Keywords


 
[1] K. Hashimoto, H. Irie, A. Fujishima, TiO2 Photocatalysis: A Historical Overview and Future Prospects, Japanese Journal of Applied Physics 44 (2005) 8269-8285.
 
[2] V. Galstyan, E. Comini, G. Faglia, G. Sberveglieri, TiO2 Nanotubes: Recent Advances in Synthesis and Gas Sensing Properties, Sensors 13 (2013) 14813-14838.
 
[3] M. Pelaez Miguel, et al, A review on the visible light active titanium dioxide photocatalysts for environmental applications, Applied Catalysis B: Environmental 125 (2012) 331-349.
 
[4] C.F. Goodeve, J.A. Kitchener, The mechanism of photosensitisation by solids, Transactions of the Faraday Society 34 (1938) 902-908.
 
[5] H. Ou, S. Lo, Review of titania nanotubes synthesized via the hydrothermal treatment: fabrication, modification, and application, Separation and Purification Technology 58 (2007) 179-191.
 
[6] J. Huusko, V. Lantto, H. Torvela, TiO2 thick-film gas sensors and their suitability for NOx monitoring, Sensors and Actuators B: Chemical 16 (1993) 245-248.
                                                                                  
[7] A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chemical reviews 95 (1995) 735-758. 
 
[8] S.Y. Huang, L. Kavan, I. Exnar, M. Graetzel, Rocking chair lithium battery based on nanocrystalline TiO2 (anatase), Journal of the Electrochemical Society 142 (1995) 142-144.
 
[9] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T.Watanabe, Light-induced amphiphilic surfaces, Nature 388 (1997) 431.
 
[10] K. Satake, A. Katayama, H. Ohkoshi, T. Nakahara, T. Takeuchi, Titania NOx sensors for exhaust monitoring, Sensors and Actuators B: Chemical 20 (1994) 111-117.
 
[11] H. Gerischer, Electrochemical photo and solar cells principles and some experiments, Electrochimica Acta 40 (1975) 263-274.
 
[12] S.V. Nair, A. Balakrishnan, K.R.V. Subramanian, A.M. Anu, A.M. Asha, B. Deepika, Effect of TiO2 nanotube length and lateral tubular spacing on photovoltaic properties of back illuminated dye sensitized solar cell, Bulletin of Materials Science 35 (2012) 489-493.
 
[13] K. Zhu, N.R. Neale, A. Miedaner, A.J. Frank, Enhanced Charge-Collection Efficiencies and Light Scattering in Dye-Sensitized Solar Cells Using Oriented TiO2 Nanotubes Arrays, Nano Lett. 7 (2007) 69-74.
[14] Y. Aoyama, Y. Oaki, R.Ise, H. Imai, Mesocrystal nanosheet of rutile TiO 2 and its reaction selectivity as a photocatalyst, Cryst Eng Comm, 14 (2012) 1405-1411.
 
[15] F. Tian, Y. Zhang, J. Zhang, Ch. Pan, Raman Spectroscopy: A New Approach to Measure the Percentage of Anatase TiO2 Exposed (001) Facets, J. Phys. Chem. C, 116 (2012) 7515-7519.
 
[16] Z.H. Chen, Y.B. Tang, C.P. Liu, Y.H. Leung, G.D. Yuan, L.M.Chen, Y.Q. Wang, I. Bello, J.A. Zapien, W.J. Zhang, C.S. Lee, S.T. Lee, Vertically aligned ZnO nanorod arrays sentisized with gold nanoparticles for Schottky barrier photovoltaic cells, The Journal of Physical Chemistry C 113 (2009) 13433-13437.
 
[17] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F.Kim, H. Yan, One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications, Advanced materials 15 (2003) 353-389.
 
[18] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Formation of titanium oxide nanotube, Langmuir 14 (1998) 3160-3163.
 
[19] B. O’Regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353 (1991) 737.
 
[20] A. Ghicov, P. Schmuki, Self-ordering electrochemistry: a review on growth and functionality of TiO 2 nanotubes and other self-aligned MO x structures, Chemical Communications (2009) 2791-2808.
 
[21] J. M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, P. Schmuki, TiO2 nanotubes: Self-organized electrochemical formation, properties and applications, Current Opinion in Solid State and Materials Science 11 (2007) 3-18.
 
[22] M. S. Sander, M. J. Cote, W. Gu, B. M. Kile, C. P. Tripp, Template‐assisted fabrication of dense, aligned arrays of titania nanotubes with well‐controlled dimensions on substrates, Advanced Materials 16 (2004) 2052-2057.
 
[23] J.M. Macak, H. Tsuchiya, P. Schmuki, Smooth Anodic TiO2 Nanotubes, Angewandte Chemie International Edition 44 (2005) 210-2102.
[24] D. Wood, J. Tauc, Weak absorption tails in amorphous semiconductors, Physical Review B 5 (1972) 3144.