[1] H.B.G. Casimir, On the attraction between two perfectlyconducting plats, Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen 51 (1948) 793.
[2] A.D. Phan, N.A. Viet, N.A. Poklonski, L.M. Woods, C.H. Le, Interaction of a graphene sheet with a ferromagnetic metal plate, Physical Review B 86 (2012) 15541.
[3] M.J. Sparnaary, Measurements of attractive force between flat plates, Physica 24 (1958) 751.
[4] A.R. Mohiddeen, Precision measurements of the casimir force, Physical Review Lettetrs 81 (1998) 21.
[5] E.M. Lifshitz, The theory of molecular attractive forces between solids,Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki. 29(1955)[Soviet Phys. JETP2 (1956) 73].
[7] V.V. Nesterenko, Boundary conditions at spatial infinity for fields in Casimir calculations, [arXiv: hep-th/0511018] (2005).
[8] M. Bordag, U. Mohideen, V.M. Mostepanenko, New development in the Casimir effect, Physics Reports 353 (2001) 1.
[9] V.M. Mostepanenko, A.O. Caride, G.L. Klimchitskaya, S.I. Zanette, Some mathematical aspects of the Lifshitz formula for the thermal Casimir force,
Proceeding of Science WC2004 (2005) 030, [
arXiv:quant-ph/0503064].
[10] M. Bordag, G.L. Klimchitskaya, U. Mohideen and V.M. Mostepanenko, Advances in the Casimir effect, Oxford university press, Oxford, (2009).
[11] V.V. Nesterenko, I.G. Pirozhenko, Lifshitz formula by spectra summation method, Physical Review A 86 (2012) 052503.
[12] B. Geyer, G.L. Klimchitskaya, V.M. Mostepanenko, Thermal quantum field theory and the Casimir interaction between dielectrics, Physical Review D 72 (2005) 085009.
[13] G. Plunien, B. Muller, W. Griner, The Casimir effect, Physics Reports 134 (1986) 87.
[14] Y.S. Barash, V.L. Ginzburg, Electromagnetic fluctuations is a substance and molecular (Van der Waals) forces between them, Soviet Physics Uspekhi 18 (1975) 305.
[15] J.Q. Quach, Gravitational Casimir Effect, Physical Review Letters 114 (2015) 081104.
[16] E. Sassaroli, Y.N. Srivastava, J. Swain, A. Widom, The dynamical and static Casimir effects and the thermodynamic instability. [arXiv: hep-ph/9805479 (1998)].
[17] B.W. Ninham, V.A. Parsegian, G.H. Weiss, Temperature-dependent van der Waals forces, Biophysical Journal, 10 (1970) 664.
[18] G.L. Klimchitskaya, U. Mohideen, V.M. Mostepanenko, Casimir and van der Waals forces between two plates or a sphere (lens) above a plate made of real metals, Physical Review A 61 (2000) 062107.
[19] Y.S. Barash, V.L. Ginzburg, Electromagnetic fluctuations in matter and molecular (Van der Waals) forces between them. Soviet Physics Uspekhi 18 (1975) 305.
[20] J. Feinberg, A. Mann, M. Revzen, Casimir effect: the classical limit, Annals of Physics 288 (2001) 103.
[21] F. Intravaia, A. Lambrecht, The role of surface plasmon modes in the Casimir effect, Open systems and information dynamics, 14 (2007) 159.
[22] M. J. Renne, Microscopic theory of retarded van der Waals forces between macroscopic dielectric bodies, Physica 56 (1971) 125.
[23] V.B. Bezerra, G.L. Klimchitskaya, V.M. Mostepanenko, Correlation of energy and free energy for the thermal Casimir force between real metals, Physical Review A 66 (2002) 062112.
[24] E. Gerlach, Equivalence of van der Waals forces between solids and the surface-plasmon interaction, Physical Review B 4 (1971) 393.
[25] D. Iannuzzi, M. Lisanti, F. Capasso, Effect of hydrogen-switchable mirrors on the Casimir force, Proceedings of the National Academy of Sciences 101 (2004) 4019.
[26] K. Schram, On the macroscopic theory of retarded van der Waals forces, Physics Letters A 43 (1973) 282.
[27] M.P. Hertzberg, R.L. Jaffe, M. Kardar, A. Scardicchio, Attractive Casimir forces in a closed geometry. Physical Review Letters 95(2005) 250402.
[28] R. Büscher, T. Emig, Geometry and spectrum of Casimir forces, Physical Review Letters 94 (2005) 133901.
[29] S.S. Gousheh, R. Moazzemi, M. A. Valuyan, Radiative correction to the Dirichlet Casimir energy for λϕ4 theory in two spatial dimensions, Physics Letters B681 (2009) 477.
[30] R. Moazzemi, M. Namdar, S.S. Gousheh. The Dirichlet Casimir effect for ϕ4 theory in (3+ 1) dimensions: a new renormalization approach, Journal of High Energy Physics 09 (2007) 029.
[31] M.A. Valuyan, R. Moazzemi, S.S. Gousheh, A direct approach to the electromagnetic Casimir energy in a rectangular waveguide, Journal of Physics B: Atomic, Molecular and Optical Physics41 (2008) 145502.
[32] R. Moazzemi, S.S. Gousheh, A new renormalization approach to the Dirichlet Casimir effect for φ^4 theory in (1+1) dimensions, Physics Letters B 658 (2008) 255.
[33]V. Kampen, N.G. Nijboer, On macroscopic theory of van der waals forces, Europhysics Letters. 26 (1968) 307.
[34]L.V. Ahlfors, Complex analysis, McGraw-Hill, (1979).