Lifshitz formula using box renormalization scheme

Document Type : Full length research Paper

Authors

1 Physics department, University of Qom, Qom, Iran

2 Department of Physics, University of Qom, Qom, Iran.

Abstract

In this paper, the Lifshitz formula for the Casimir energy between two dielectrics in zero temperature is derived using box renormalization. Although there are several derivations for the force in this case in the literature, including Lifshitz’s own proof, so far there has been no unambiguous and rigorous derivation for energy that we are aware of. Since energy becomes important in some cases, e.g. calculation of entropy or heat capacity, using the correct and precise definition of the Casimir energy, for the first time, we remove all of the infinities systematically without any ambiguity. This proof also shows the strength and accuracy of the box renormalization scheme.

Keywords


[1] H.B.G. Casimir, On the attraction between two perfectlyconducting plats, Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen 51 (1948) 793.
[2] A.D. Phan, N.A. Viet, N.A. Poklonski, L.M. Woods, C.H. Le, Interaction of a graphene sheet with a ferromagnetic metal plate, Physical Review B 86 (2012) 15541.
[3] M.J. Sparnaary, Measurements of attractive force between flat plates, Physica 24 (1958) 751.
 
[4] A.R. Mohiddeen, Precision measurements of the casimir force, Physical Review Lettetrs 81 (1998) 21.
[5] E.M. Lifshitz, The theory of molecular attractive forces between solids,Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki. 29(1955)[Soviet Phys. JETP2 (1956) 73].
[6] V.V. Nesterenko, Surface modes and photonic modes in Casimir calculations for a compact cylinder, Journal of Physics A: Mathematical and Theoretical. 41 (2008) 164005.‏
 
[7] V.V. Nesterenko, Boundary conditions at spatial infinity for fields in Casimir calculations, [arXiv: hep-th/0511018] (2005).‏
[8] M. Bordag, U. Mohideen, V.M. Mostepanenko, New development in the Casimir effect, Physics Reports 353 (2001)  1.
[9] V.M. Mostepanenko, A.O. Caride, G.L. Klimchitskaya, S.I. Zanette, Some mathematical aspects of the Lifshitz formula for the thermal Casimir force, Proceeding of Science WC2004 (2005) 030, [arXiv:quant-ph/0503064].
[10] M. Bordag, G.L. Klimchitskaya, U. Mohideen and V.M. Mostepanenko, Advances in the Casimir effect, Oxford university press, Oxford, (2009).
[11] V.V. Nesterenko, I.G. Pirozhenko, Lifshitz formula by spectra summation method, Physical Review A 86 (2012) 052503.
[12] B. Geyer, G.L. Klimchitskaya, V.M. Mostepanenko, Thermal quantum field theory and the Casimir interaction between dielectrics, Physical Review D 72 (2005) 085009. ‏
[13] G. Plunien, B. Muller, W. Griner, The Casimir effect, Physics Reports 134 (1986) 87.
[14] Y.S. Barash, V.L. Ginzburg, Electromagnetic fluctuations is a substance and molecular (Van der Waals) forces between them, Soviet Physics Uspekhi ­18 (1975) 305.
[15] J.Q. Quach, Gravitational Casimir Effect, Physical Review Letters 114 (2015) 081104. ‏
 [16] E. Sassaroli, Y.N. Srivastava, J. Swain, A. Widom, The dynamical and static Casimir effects and the thermodynamic instability. [arXiv: hep-ph/9805479 (1998)]. ‏
 [17] B.W. Ninham, V.A. Parsegian, G.H. Weiss, Temperature-dependent van der Waals forces, Biophysical Journal, 10 (1970) 664.
[18] G.L. Klimchitskaya, U. Mohideen, V.M. Mostepanenko, Casimir and van der Waals forces between two plates or a sphere (lens) above a plate made of real metals, Physical  Review A 61 (2000) 062107.
[19] Y.S. Barash, V.L. Ginzburg, Electromagnetic fluctuations in matter and molecular (Van der Waals) forces between them. Soviet Physics Uspekhi 18 (1975) 305. ‏
[20] J. Feinberg, A. Mann, M. Revzen, Casimir effect: the classical limit, Annals of Physics 288 (2001) 103. ‏
[21] F. Intravaia, A. Lambrecht, The role of surface plasmon modes in the Casimir effect, Open systems and information dynamics, 14 (2007) 159.
[22] M. J. Renne, Microscopic theory of retarded van der Waals forces between macroscopic dielectric bodies, Physica 56 (1971) 125.
[23] V.B. Bezerra, G.L. Klimchitskaya, V.M. Mostepanenko, Correlation of energy and free energy for the thermal Casimir force between real metals, Physical Review A 66 (2002) 062112. ‏
[24] E. Gerlach, Equivalence of van der Waals forces between solids and the surface-plasmon interaction, Physical Review B 4 (1971) 393.‏
[25] D. Iannuzzi, M. Lisanti, F. Capasso, Effect of hydrogen-switchable mirrors on the Casimir force, Proceedings of the National Academy of Sciences 101 (2004) 4019.
[26] K. Schram, On the macroscopic theory of retarded van der Waals forces, Physics Letters A 43 (1973) 282.
[27] M.P. Hertzberg, R.L. Jaffe, M. Kardar, A. Scardicchio, Attractive Casimir forces in a closed geometry. Physical Review Letters 95(2005) 250402.‏
[28] R. Büscher, T. Emig, Geometry and spectrum of Casimir forces, Physical Review Letters 94 (2005) 133901.
 [29] S.S. Gousheh, R. Moazzemi, M. A. Valuyan, Radiative correction to the Dirichlet Casimir energy for λϕ4 theory in two spatial dimensions, Physics Letters B681 (2009) 477.
[30] R. Moazzemi, M. Namdar, S.S. Gousheh. The Dirichlet Casimir effect for ϕ4 theory in (3+ 1) dimensions: a new renormalization approach, Journal of High Energy Physics 09 (2007) 029.‏
 
[31] M.A. Valuyan, R. Moazzemi, S.S. Gousheh, A direct approach to the electromagnetic Casimir energy in a rectangular waveguide, Journal of Physics B: Atomic, Molecular and Optical Physics41 (2008) 145502.
 
[32] R. Moazzemi, S.S. Gousheh, A new renormalization approach to the Dirichlet Casimir effect for φ^4 theory in (1+1) dimensions, Physics Letters B 658 (2008) 255.
 
[33]V. Kampen, N.G. Nijboer, On macroscopic theory of van der waals forces, Europhysics Letters. 26 (1968) 307.
 
[34]L.V. Ahlfors, Complex analysis, McGraw-Hill, (1979).