Improvement of performance of electronic devices based on polythiophane using band gap engineering in the presence of graphene.

Document Type : Full length research Paper

Author

Department of Physics, Faculty of Science, Amirkabir University (Tehran Polytechnic), Tehran, Iran

Abstract

Density functional theory (DFT) and many body perturbation theory at the G0W0 level were used to investigate the change of the electron properties of Polythiophene (PT) polymer in the vicinity of graphene. The result of the analysis of the change in the density of the load compared to the pre-mutual interaction indicates a strong electric bipolarity and an absorption of the physical type at the surface. The change in the calculated electrical potential indicates the change in the work function to the value of its initial value . The results from the DFT do not show a change in the polymeric energy gap, while graphene energy gap changes from the isolated chain obtained from the results of the many body perturbation theory at the G0W0 level.

Keywords


  [1]     L. RuoChen, L. ZhengPing, Polythiophene: Synthesis in aqueous medium and controllable morphology, Chinese Science Bulletin, (2009).‏
  [2]     S. Skotheim, A. Terje, J. Reynolds, Handbook of Conducting Polymers, 2 Volume Set, (2007).‏
  [3]     E. Perzon, X. Wang, F. Zhang, W. Mammo, J.L. Delgado, Design synthesis and properties of low band gap polyfluorenes for photovoltaic devices, Synthetic metals, (2005).‏
  [4]     H.A. Ho, A. Najari, M. Leclerc, Optical detection of DNA and proteins with cationic polythiophenes, Accounts of chemical research 41.2 (2008).‏
  [5]     J.K. MwauraM.R. Pinto, D. Witker, N. Ananthakrishnan, Spectral broadening in nanocrystalline TiO2 solar cells based on poly (p-phenylene ethynylene) and polythiophene sensitizers, Chemistry of materials 18.26 (2006).‏
  [6]     Y.  ZouW. Wu, G. Sang, Y. Yang, Y.  Liu, Y. Li, Polythiophene derivative with phenothiazine− vinylene conjugated side chain: Synthesis and its application in field-effect transistors, Macromolecules 40.20 (2007).‏
  [7]     T.P KaloniG. SchreckenbachM.S. Freund, Band gap modulation in polythiophene and polypyrrole-based systems, Scientific reports 6 (2016).‏
  [8]     E. Zhou, K. HashimotoK. Tajima, Low band gap polymers for photovoltaic device with photocurrent response wavelengths over 1000nm, Polymer 54.24 (2013).‏
  [9]     Z. Liu, Q. Liu, Y. Huang, Y. Ma, S. Yin, X. Zhang, Organic photovoltaic devices based on a novel acceptor material: graphene, Advanced Materials 20.20 (2008).‏
[10]     V. Skrypnychuk, N. Boulanger, V. Yu., Enhanced vertical charge transport in a semiconducting P3HT thin film on single layer graphene, Advanced Functional Materials 25.5 (2015).‏
[11]     T. WangT.R. KafleB. KattelQ. LiuJ. WuW.L. Chan, Growing Ultra-flat Organic Films on Graphene with a Face-on Stacking via Moderate Molecule-Substrate Interaction, Scientific reports 6 (2016).‏
[12]     Q. Fu, D. NabokC. Draxl , Energy-Level Alignment at the Interface of Graphene Fluoride and Boron Nitride Monolayers: An Investigation by Many-Body Perturbation Theory, The Journal of Physical Chemistry C 120.21 (2016).‏
[13]     P. Puschnig, P. Amiri, C. Draxl, Band renormalization of a polymer physisorbed on graphene investigated by many-body perturbation theory, Physical Review B 86.8 (2012).
[14]     N.A. LanzilloN. Kharche, S.K. Nayak, Substrate-induced band gap renormalization in semiconducting carbon nanotubes, Scientific reports 4 (2014).‏
[15]     G. Lastra, J. Maria, Polarization-induced renormalization of molecular levels at metallic and semiconducting surfaces, Physical Review B 80.24 (2009).‏
[16]     J.B. NeatonM.S. HybertsenS.G. Louie, Renormalization of molecular electronic levels at metal-molecule interfaces, Physical review letters 97.21 (2006).‏
[17]     P. Mori-Sánchez, A.J. Cohen, W. Yang, Discontinuous nature of the exchange-correlation functional in strongly correlated systems, Physical review letters 102.6 (2009).‏
[18]     D. BaeriswylD.K. Campbell, G.C. Clark, G. Harbeke. Conjugated conducting polymers, Vol. 102. Springer Science & Business Media, (2012).‏
[19]     J.C. Inkson, Many-body effect at metal-semiconductor junctions. II. The self energy and band structure distortion, Journal of Physics C: Solid State Physics 6.8 (1973).‏
[20]     P. Darancet, Ab initio G W electron-electron interaction effects in quantum transport, Physical Review B 75.7 (2007).‏
[21]     D. Waroquiers, Band widths and gaps from the Tran-Blaha functional: Comparison with many-body perturbation theory, Physical Review B 87.7 (2013).‏
[22]     X. GonzeB. Amadon, P.M. Anglade, J.M. Beuken, ABINIT: First-principles approach to material and nanosystem properties, Computer Physics Communications 180.12 (2009).‏
[23]     H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Physical review B 13.12 (1976).
[24]     N. TroullierJ.L. Martins, Efficient pseudopotentials for plane-wave calculations, Physical review B 43.3 (1991).
[25]     S. Pesant, P. BoulangerM. Côté, M. Ernzerhof, Ab initio study of ladder-type polymers: Polythiophene and polypyrrole, Chemical Physics Letters, (2008).
[26]     G. OnidaL. ReiningA. Rubio, Electronic excitations: density-functional versus many-body Green’s-function approaches, Reviews of Modern Physics 74.2 (2002).‏
[27]     L. Hedin, S. Lundqvist, Effects of electron-electron and electron-phonon interactions on the one-electron states of solids, Solid state physics 23 (1970).‏
[28]     A. MariniC. HoganM. GrüningD. Varsano, Yambo: an ab initio tool for excited state calculations,  Computer Physics Communications 180.8 (2009).‏
[29]     U. Scherf, K. Müllen – D. Makromolekulare, C. Rapid, 7. A soluble ladder polymer via bridging of functionalized poly (p‐phenylene)‐precursors, Macromolecular Rapid Communications 12.8 (1991).‏
[30]     V. Horst, Ab initio calculation of the electronic and optical excitations in polythiophene: Effects of intra-and interchain screening, Physical review letters 83.21 (1999).‏
[31]     M. Kobayashi, J. Chen, T.C. Chung, F. MoraesA.J. Heeger, Synthesis and properties of chemically coupled poly (thiophene), Synthetic metals 9.1 (1984).‏
[32]     M. Das, Low-lying excitations of poly-fused thiophene within Pariser–Parr–Pople model: A density matrix renormalization group study, The Journal of chemical physics 132.19 (2010)
[33]     R. Pariser, R.G. Parr, A Semi‐Empirical Theory of the Electronic Spectra and Electronic Structure of Complex Unsaturated Molecules. I., The Journal of Chemical Physics 21.3 (1953).
[34]     H. Sun, Z. Hu, C. Zhong, S. Zhang, Quantitative estimation of exciton binding energy of polythiophene-derived polymers using polarizable continuum model tuned range-separated density functional, The Journal of Physical Chemistry C 120.15 (2016).‏
[35]     G. Samsonidze, F.J. Ribeiro, M.L. Cohen, S.G. Louie, Quasiparticle and optical properties of polythiophene-derived polymers. Physical Review B, (2014).‏
[36]     D. Nabok, P. Peter, A. Claudia, Cohesive and surface energies of π-conjugated organic molecular crystals: A first-principles study, Physical Review B 77.24 (2008).‏
[37]     M. Dion, H. Rydberg, E. Schröder, D.C. Langreth, Van der Waals density functional for general geometries, Physical review letters 92.24 (2004).‏
[38]     S. Grimme, Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction, Journal of computational chemistry 27.15 (2006).‏
[39]     S. Haider, A. RoldanN.D. Leeuw, Catalytic dissociation of water on the (001),(011), and (111) surfaces of violarite, FeNi2S4: a DFT-D2 study, The Journal of Physical Chemistry C 118.4 (2014).‏
 
[40]     R. Spiess, L. Peruzzo, D.J. Prior, Dynamic image potential at an Al (111) surface, Physical review letters 80.19 (1998).‏
[41]     F. Marsusi, I.A. Fedorov, S. Gerivani, Graphene-induced band gap renormalization in polythiophene: a many-body perturbation study, Journal of Physics: Condensed Matter 30.3 (2017).
[42]     M. Rohlfing, Image states and excitons at insulator surfaces with negative electron affinity, Physical review letters 91.25 (2003).‏