[1] L. RuoChen, L. ZhengPing, Polythiophene: Synthesis in aqueous medium and controllable morphology, Chinese Science Bulletin, (2009).
[2] S. Skotheim, A. Terje, J. Reynolds, Handbook of Conducting Polymers, 2 Volume Set, (2007).
[3] E. Perzon, X. Wang, F. Zhang, W. Mammo, J.L. Delgado, Design synthesis and properties of low band gap polyfluorenes for photovoltaic devices, Synthetic metals, (2005).
[4] H.A. Ho, A. Najari, M. Leclerc, Optical detection of DNA and proteins with cationic polythiophenes, Accounts of chemical research 41.2 (2008).
[5] J.K. Mwaura, M.R. Pinto, D. Witker, N. Ananthakrishnan, Spectral broadening in nanocrystalline TiO2 solar cells based on poly (p-phenylene ethynylene) and polythiophene sensitizers, Chemistry of materials 18.26 (2006).
[6] Y. Zou, W. Wu, G. Sang, Y. Yang, Y. Liu, Y. Li, Polythiophene derivative with phenothiazine− vinylene conjugated side chain: Synthesis and its application in field-effect transistors, Macromolecules 40.20 (2007).
[8] E. Zhou, K. Hashimoto, K. Tajima, Low band gap polymers for photovoltaic device with photocurrent response wavelengths over 1000nm, Polymer 54.24 (2013).
[9] Z. Liu, Q. Liu, Y. Huang, Y. Ma, S. Yin, X. Zhang, Organic photovoltaic devices based on a novel acceptor material: graphene, Advanced Materials 20.20 (2008).
[10] V. Skrypnychuk, N. Boulanger, V. Yu., Enhanced vertical charge transport in a semiconducting P3HT thin film on single layer graphene, Advanced Functional Materials 25.5 (2015).
[12] Q. Fu, D. Nabok, C. Draxl , Energy-Level Alignment at the Interface of Graphene Fluoride and Boron Nitride Monolayers: An Investigation by Many-Body Perturbation Theory, The Journal of Physical Chemistry C 120.21 (2016).
[13] P. Puschnig, P. Amiri, C. Draxl, Band renormalization of a polymer physisorbed on graphene investigated by many-body perturbation theory, Physical Review B 86.8 (2012).
[14] N.A. Lanzillo, N. Kharche, S.K. Nayak, Substrate-induced band gap renormalization in semiconducting carbon nanotubes, Scientific reports 4 (2014).
[15] G. Lastra, J. Maria, Polarization-induced renormalization of molecular levels at metallic and semiconducting surfaces, Physical Review B 80.24 (2009).
[17] P. Mori-Sánchez, A.J. Cohen, W. Yang, Discontinuous nature of the exchange-correlation functional in strongly correlated systems, Physical review letters 102.6 (2009).
[18] D. Baeriswyl, D.K. Campbell, G.C. Clark, G. Harbeke. Conjugated conducting polymers, Vol. 102. Springer Science & Business Media, (2012).
[19] J.C. Inkson, Many-body effect at metal-semiconductor junctions. II. The self energy and band structure distortion, Journal of Physics C: Solid State Physics 6.8 (1973).
[20] P. Darancet, Ab initio G W electron-electron interaction effects in quantum transport, Physical Review B 75.7 (2007).
[21] D. Waroquiers, Band widths and gaps from the Tran-Blaha functional: Comparison with many-body perturbation theory, Physical Review B 87.7 (2013).
[22] X. Gonze, B. Amadon, P.M. Anglade, J.M. Beuken, ABINIT: First-principles approach to material and nanosystem properties, Computer Physics Communications 180.12 (2009).
[23] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Physical review B 13.12 (1976).
[24] N. Troullier, J.L. Martins, Efficient pseudopotentials for plane-wave calculations, Physical review B 43.3 (1991).
[25] S. Pesant, P. Boulanger, M. Côté, M. Ernzerhof, Ab initio study of ladder-type polymers: Polythiophene and polypyrrole, Chemical Physics Letters, (2008).
[26] G. Onida, L. Reining, A. Rubio, Electronic excitations: density-functional versus many-body Green’s-function approaches, Reviews of Modern Physics 74.2 (2002).
[27] L. Hedin, S. Lundqvist, Effects of electron-electron and electron-phonon interactions on the one-electron states of solids, Solid state physics 23 (1970).
[29] U. Scherf, K. Müllen – D. Makromolekulare, C. Rapid, 7. A soluble ladder polymer via bridging of functionalized poly (p‐phenylene)‐precursors, Macromolecular Rapid Communications 12.8 (1991).
[30] V. Horst, Ab initio calculation of the electronic and optical excitations in polythiophene: Effects of intra-and interchain screening, Physical review letters 83.21 (1999).
[31] M. Kobayashi, J. Chen, T.C. Chung, F. Moraes, A.J. Heeger, Synthesis and properties of chemically coupled poly (thiophene), Synthetic metals 9.1 (1984).
[32] M. Das, Low-lying excitations of poly-fused thiophene within Pariser–Parr–Pople model: A density matrix renormalization group study, The Journal of chemical physics 132.19 (2010)
[33] R. Pariser, R.G. Parr, A Semi‐Empirical Theory of the Electronic Spectra and Electronic Structure of Complex Unsaturated Molecules. I., The Journal of Chemical Physics 21.3 (1953).
[34] H. Sun, Z. Hu, C. Zhong, S. Zhang, Quantitative estimation of exciton binding energy of polythiophene-derived polymers using polarizable continuum model tuned range-separated density functional, The Journal of Physical Chemistry C 120.15 (2016).
[35] G. Samsonidze, F.J. Ribeiro, M.L. Cohen, S.G. Louie, Quasiparticle and optical properties of polythiophene-derived polymers. Physical Review B, (2014).
[36] D. Nabok, P. Peter, A. Claudia, Cohesive and surface energies of π-conjugated organic molecular crystals: A first-principles study, Physical Review B 77.24 (2008).
[37] M. Dion, H. Rydberg, E. Schröder, D.C. Langreth, Van der Waals density functional for general geometries, Physical review letters 92.24 (2004).
[38] S. Grimme, Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction, Journal of computational chemistry 27.15 (2006).
[39] S. Haider, A. Roldan, N.D. Leeuw, Catalytic dissociation of water on the (001),(011), and (111) surfaces of violarite, FeNi2S4: a DFT-D2 study, The Journal of Physical Chemistry C 118.4 (2014).
[40] R. Spiess, L. Peruzzo, D.J. Prior, Dynamic image potential at an Al (111) surface, Physical review letters 80.19 (1998).
[41] F. Marsusi, I.A. Fedorov, S. Gerivani, Graphene-induced band gap renormalization in polythiophene: a many-body perturbation study, Journal of Physics: Condensed Matter 30.3 (2017).
[42] M. Rohlfing, Image states and excitons at insulator surfaces with negative electron affinity, Physical review letters 91.25 (2003).