[1] A. Rashed, Properties and Characteristics of Silicon Carbide. POCO Graphite, Inc. (2002).
[2] J. Fan, P.K. Chu, Silicon carbide nanostructures: fabrication,structure, and properties. Springer, New York, (2014)
[3] M. Margaret, SILICON CARBIDE ALLOYS, Department of Metallurgy and Engineering Materials., University of Newcastle upon Tyne (1983) 302.
[4] Q. Fan, et al. The Mechanical and Electronic Properties of Carbon-Rich Silicon Carbide. Materials, 9 5 (2016) 333.
[5] X. Dong, Y.C. Shin, Multiscale Modeling for Predicting the Mechanical Properties of Silicon Carbide Ceramics. Journal of the American Ceramic Society, 99 3 (2016) 1006-1014.
[6] Y. Gao, F.C. Zhang, W.H. Zhang. The electronic and structural properties of 3C-SiC: A first-principles study. dvanced Materials Research. 72 7 (2014) 208-212.
[7] M. Nuruzzaman, et al. Structural, elastic and electronic properties of 2H-and 4H-SiC journal of Engineering Research and Applications 5 4 (2015) 48-52.
[8] P. Vashishta, et al. Interaction potential for silicon carbide: a molecular dynamics study of elastic constants and vibrational density of states for crystalline and amorphous silicon carbide. Journal of applied physics, 101 10 (2007) 103515.
[9] L.L. Snead, et al. Handbook of SiC properties for fuel performance modeling. Journal of nuclear materials 37 (2007) p. 329-377.
[10] X. Luo, S. Goel, R.L. Reuben, A quantitative assessment of nanometric machinability of major polytypes of single crystal silicon carbide. Journal of the European Ceramic Society, 32 12 (2012) 3423-3434.
[11] E. Konstantinova, M. Bell, V. Anjos, Ab initio calculations of some electronic and elastic properties for SiC polytypes. Intermetallics, 16 8 (2008) 1040-1042.
[12] M. Yoshida, et al., Pressure-induced phase transition in SiC. Physical Review B, 48 14(1993) 10587.
[13] K. Zhuravlev, et al., Vibrational, elastic, and structural properties of cubic silicon carbide under pressure up to 75 GPa: Implication for a primary pressure scale. Journal of Applied Physics, 113 11 (2013) 113503.
[14] C. Varadachari, R. Bhowmick, Ab initio derivation of a dataset of real temperature thermodynamic properties: Case study with SiC. Modelling and Simulation in Materials Science and Engineering, 17 7 (2009) 075006.
[15] B. Thakore, et al., Thermodynamic properties of 3C—SiC. Chinese Physics B, 22 10 (2013) 106401.
[16] S. Roy, et al., The mechanical properties of polycrystalline 3C-SiC films grown on polysilicon substrates by atmospheric pressure chemical-vapor deposition. Journal of applied physics 99 4 (2006) 044108.
[17] X. Liu, et al., Optical and mechanical properties of C, Si, Ge, and 3C–SiC determined by first-principles theory using Heyd–Scuseria–Ernzerhof functional. Materials Science in Semiconductor Processing 16 6 (2013) 1369-1376.
[18] P. Erhart, K. Albe, Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide. Physical Review B 71 3 (2005) 035211.
[19] B. Mayer, et al., Ab-initio calculation of the elastic constants and thermal expansion coefficients of Laves phases. Intermetallics 11 1 (2003) 23-32.
[20] H. Yang, et al., A molecular dynamics study on melting point and specific heat of Ni 3 Al alloy. Science in China Series G: Physics Mechanics and Astronomy 50 4 (2007) 407-413.
[21] K. Karch, et al., Pressure-dependent dynamical and dielectric properties of cubic SiC. Journal of Physics: Condensed Matter, 8 17 (1996) 2945.
[22] M. Zhang, et al., Thermal conductivities of molecular liquids by reverse nonequilibrium molecular dynamics. The Journal of Physical Chemistry B 109 31 (2005) 15060-15067.
[23] N. Razmara, I. Tasdighi, Molecular Dynamic simulation with Lammps Open source code, Dibagaran institute Tehran (2016).
[24] R. Carnahan, Elastic properties of silicon carbide. Journal of the American Ceramic Society 51 4 (1968) 223-224.
[25] Z. Li, R.C. Bradt, The single-crystal elastic constants of cubic (3C) SiC to 1000 C. Journal of materials science 22 7 (1987) 2557-2559.
[26] D.N. Talwar, Probing optical, phonon, thermal and defect properties of 3C–SiC/Si (001). Diamond and Related Materials 52 (2015) 1-10.
[27] G.A. Slack, S. Bartram, Thermal expansion of some diamondlike crystals. Journal of Applied Physics 46 1 (1975) 89-98.
[28] Y. Wang, et al., Thermal equation of state of silicon carbide. Applied Physics Letters 108 6 (2016) 061906.
[29] K. Karch, et al., Pressure-dependent properties of SiC polytypes. Physical Review B 53 20 (1996) 13400.
[30] T. Kawamura, et al., Thermal conductivity of SiC calculated by molecular dynamics. JapaneseJournal of Applied Physics 47 12R (2008) 8898.
[31] J. Li, L. Porter, S. Yip, Atomistic modeling of finite-temperature properties of crystalline β-SiC: II. Thermal conductivity and effects of point defects. Journal of Nuclear Materials 255 13 (1998) 139-152.
[32] J.P. Crocombette, et al., Molecular dynamics modeling of the thermal conductivity of irradiated SiC as a function of cascade overlap. Journal of applied physics 101 2 (2007) 023527.
[33] H. Shen, MD simulations on the melting and compression of C, SiC and Si nanotubes, Journal of materials science 42 15 (2007) 6382-6387.
[34] I. peivaste, et al., Comparative study on mechanical properties of three different SiC polytypes(3C, 4H and 6H) under high pressure: First-principle calculations, Vacuum 154 (2018) 37-43.