Document Type : Full length research Paper
Abstract
Highlights
[1] D. Strickland, G. Mourou, Compression of amplified chirped optical pulse, Optics Communications 56 (1985) 219-221.
[2] G. Mourou, T. Tajima, S.V. Bulanov, Optics in relativistic regime, Review of Modern Physics 78 (2006) 309-371.
[3] An-Chun Tien, S. Backus, et. al., Short-pulse laser damage in transparent materials as a function of pulse durations, Physical Review Letters 82 (1999) 3883-3886.
[4] S. Suckewer, Ultra-intense laser: Beyound a pettawat, Nature Physics 7 (2011) 11-12.
[5] G. Mourou, J. Fisch, et. al., Exawat-Zettawat pulse generation and applications, Optics Communications 285 (2012) 720-724.
[6] C. Thaury, F. Quere, et. al., Plasma mirros for ultrahigh-intensity optics, Nature Physics 3 (2007) 424-429.
[7] P. Michel, L. Divol, D. Turnball, J.D. Moody, Dynamic control of the polarization of intense laser beams via optical wave mixing in plasmas, Physical Review Letters 113 (2014) 205001.
[8] Lu-Le Yu, Yao Zhao, et. al., Plasma optical modulator for intense lasers, Nature Communications 7 (2016) 11893.
[9] H.C. Wu, Z.M. Sheng, J. Zhang, Chirped pulse compression in nonuniform plasma gratings, Applied Physics Letters 87 (2005) 201502.
[10] H.C. Wu, Z.M. Sheng, Q.J. Zhang, J. Zhang, Manipulating ultrashort intense laser pulses by plasma Bragg gratings, Physics of Plasmas 12 (2005) 113103.
[11] S.X. Luan, Q.J. Zhang, Z.M. Sheng, The formation of relativistic electromagnetic solitons in plasma Bragg gratings induced by two counter-propagating laser pulses, Applied Physics B 93 (2008) 793-799.
[12]M. Botton, A. Ron, Efficiency enhancement of a plasma filled backward wave oscillator by self-induced distributed feedback, Physical Review Letters 66 (1991) 2468-2471.
[13] Z.M. Sheng, J. Zhang, D. Umstadter, Plasma density gratings induced by intersecting laser pulses in underdense plasmas, Applied Physics B 77 (2003) 673-680.
[14] H.Y. Chen, Y. Yin, et. al., Moving electron density gratings induced in the beat-wave field of two counter-propagating laser pulses, Physics of Plasmas 17 (2010) 083112.
[15] M. Durand, A. Jarnac, et. al., Dynamics of plasma gratings in atomic and molecular gases, Physical Review E 86 (2012) 036405.
[16] G. Lehmann, K.H. Spatschek, Transient Plasma Photonic Crystals for High-Power Lasers, Physical Review Letters 116 (2016) 225002.
[17] G.P. Agrawal, Applications of nonlinear fiber optics 2nd Edition, Academic Press, New York, (2008).
[18] V.E. Zakharov, L.A. Ostrovsky, Modulational instability: the beginning, Physica D 238 (2009) 540-548.
[19] T.B. Benjamin, K. Hasselmann, Instability of periodic wavetrains in nonlinear dispersive systems, Proceedings of the Royal Society A 299 (1967) 59-75.
[20] L.A. Ostrovsky, Propagation of wave packets and space-time self-focusing in nonlinear medium, Soviet Physics JETP 24 (1967) 797-800.
[21] A. Hasegawa, Observation of self-trapping instability of a plasma cyclotron wave in a computer experiment, Physical Review Letters 24 (1970) 1165-1168.
[22] C.M. De Sterke, Theory of modulational instability in fiber Bragg gratings, Journal of the Optica Society of America B 15 (1998) 2660-2667.
[23] A. Yariv, P. Yeh, Photonics 6th Edition, Oxford Univerity Press, Oxford, (2007).
[24] J. Borhanian, Nonlinear birefringence in plasmas: Polarization dynamics, vector modulational instability and vector solitons, Physics of Plasmas 21 (2014) 062312.
[25] G.P. Agrawal, Nonlinear Fiber Optics 4th Edition, Academic Press, New York, (2007).
[26] M.R. Spiegel, S. Lipschutz, J. Liu, Mathematical handbook of formulas and table 3rd edition, Mc Graw-Hill, New York (2009).
Keywords
Main Subjects