بازده ایزوتوپی و نیمه عمر شکافت خودبخودی هسته ی فوق سنگین 284Fl

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

1 عضو هیأت علمی دانشگاه مازندران

2 گروه فیزیک هسته ای ، دانشکده علوم پایه،دانشگاه مازندران ، بابلسر، ایران

چکیده

در این پژوهش شکافت خودبخودی هسته ی فوق سنگین Fl284را با درنظر گرفتن پتانسیل کولنی و مجاورتی مورد مطالعه قرار داده ایم. انرژی تولید شده در هر شکافتگی Q، سد شکافت (V-Q)،نفوذپذیری، ثابت واپاشی و بازده شکافت رابرای هر شکافتگی محاسبه نموده ایم. با توجه به عدم تقارن جرم و بار شکافت پذیری مطلوب در شکافت خودبخودی برای بالاترین مقدار Q و کمترین مقدار (V-Q) حاصل می شود. برای شکافت خودبخودی این هسته بالاترین بازده برای شکافتگیِ منجر به ایزوتوپ Xe136 بعنوان یکی از پاره های شکافت بدست آمد. مقایسه ی بین بازده های نسبی شکافت برای جفت ایزوتوپ های تولید شده بعنوان پاره های شکافت نشان دهنده ی این است که هسته های جادویی دوگانه و لایه های بسته نزدیک به آنها دارای بیشترین بازده شکافت می باشند. ثابت واپاشی رابرای هر کدام از شکافتهای دوتایی بطور جداگانه محاسبه و با استفاده از مجموع آنها بعنوان ثابت واپاشی کل، نیمه عمر شکافت خودبخودی این هسته را بدست آورده و با داده های تجربی و نتایج حاصل از روابط نیمه تجربی مقایسه نموده ایم. این مقایسه نشان می دهد که نتایج حاصل از این روش محاسباتی نسبت به نتایج حاصل از روابط نیمه تجربی به داده های تجربی نزدیکتر است.

کلیدواژه‌ها


عنوان مقاله [English]

Isotopic yield and half-life for the spontaneous fission of 284Fl, superheahy nucleus

نویسندگان [English]

  • Mohammad Reza Pahlavani 1
  • Mahdi Joharifard 2
1 Faculty member, department of nuclear physics, faculty of basic science, university of mazandaran
2 Department of Nuclear Physics, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
چکیده [English]

IIn this research spontaneous fission of 284Fl superheavy nucleus has been studied using Coulomb and nuclear proximity potential. Released energy in each fragmentation Q, driving potential (V-Q), penetrability, decay constant and fission yield for each individual fragmentation are calculated. With respect to the mass and charge asymmetry, the most favorable fragmentation in the binary spontaneous fission occurs for the highest Q value and the lowest driving potential (V-Q). For spontaneous fission of 284Fl superheavy nucleus, the highest yield has been seen for 136Xe isotope (N = 82, Z = 54) as one of the Fragments. The comparison between relative yields shows the role of doubly magic and near doubly magic nuclei in having the highest fission yield. The spontaneous fission half-life of 284Fl superheavy nucleus are calculated by obtaining the total decay constant λ and compared with the results of semi empirical formula as well as experimental data. Satisfactory agreement achieved between the results of this approach and experimental data than the results of semi empirical formulas

کلیدواژه‌ها [English]

  • Spontaneous fission
  • Superheavy nuclei
  • Isotopic yield
  • Half-life
  • Fission barrier
 
[1] P.B. Price, Complex radioactivity, Nuclear Physics A 502 (1989) 41-58.
 
[2] O. Hahn, F. Strassmann, Über den Nachweis und das Verhalten der bei der Bestrahlung des Urans mittels Neutronen entstehenden Erdalkalimetalle, Naturwissenschaften 27 (1939) 11-15.
 
[3] N. Bohr, J.A. Wheeler, The Mechanism of Nuclear Fission, Physical Review 56 (1939)426-450.
 
[4] M.R. Pahlavani, S.M. Mirfathi, Neutron-induced fission of even- and odd- mass plutonium isotopes within a four-dimensional Langevin framework, Physical Review C 96 (2017) 014606.
 
[5] M.R. Pahlavani, S.M. Mirfathi, Dynamical simulation of neutron-induced fission of uranium isotopes using four-dimensional Langevin equations, Physical Review C 93 (2016) 044617.
 
[6] M.R. Pahlavani, D. Naderi, Influence of dynamical parameters on pre-scission particles and fission probability in heavy-ion collisions, Physical Review C 83 (2011) 024602.
[7] D.J. Hinde, M. Dasgupta, J.R. Leigh, J.C. Mein, C.R. Morton, J.O. Newton, H. Timmers, Conclusive evidence for the influence of nuclear orientation on quasifission, Physical Review C 53 (1996) 1290.
 
[8] K. Nishio, H. Ikezoe, I. Nishinaka, S. Mitsuoka, K. Hirose, T. Ohtsuki, Y. Watanabe, Y. Aritomo, S. Hofmann, Evidence for quasifission in the sub-barrier reaction of 30Si+238U, Physical Review C 82 (2010) 044604.
 
[9] D.J. Hinde, R. du Rietz, M. Dasgupta, R.G. Thomas, L.R. Gasques,
Two Distinct Quasifission Modes in the 32S+232Th Reaction, Physical Review Letters 101 (2008) 092701
 
[10] M.R. Pahlavani, S.M. Mirfathi, Probing energy dissipation, γ-ray and neutron multiplicity in the thermal neutron-induced fission of 239Pu, European Physical Journal A 52 (2016) 95.
 

[11] M.R. Pahlavani, S.M. Mirfathi, Dynamics of neutron-induced fission of 235U using four-dimensional Langevin equations, Physical Review C 92 (2015) 024622.

 
[12] A. Deppman, E. Andrade-II, V. Guimarães, G.S. Karapetyan, A.R. Balabekyan, N.A. Demekhina, Physical ReviewC 88 (2013) 024608.
 
[13] Y. Ayyad, J. Benlliure, E. Casarejos, H. Álvarez-Pol, A. Bacquias, A. Boudard, M. Caamaño, T. Enqvist, V. Föhr, A. Kelić-Heil, K. Kezzar, S. Leray, D. Mancusi, C. Paradela, D. Pérez-Loureiro, R. Pleskač, J.L. Rodríguez-Sánchez, D. Tarrío, Proton-induced fission of 181Ta at high excitation energies, Physical Review C 89 (2014) 054610.
 
[14] K.B. Gikal, E.M. Kozulin, A.A. Bogachev, N.T. Burtebaev, A.V. Edomskiy, I.M. Itkis, M.G. Itkis, G.N. Knyazhev, K.V. Kovalchuk, T.N. Kvochkina, E. Piasecki, V.A. Rubchenya, S.K. Sahiev, W.H. Trzaska, E. Vardaci, Proton induced fission of 232Th at intermediate energies, Physics of Atomic Nuclei 79 (2016) 1367-1374.
 
[15] D. Naderi, M.R. Pahlavani, S.A. Alavi, Anisotropy of the angular distribution of fission fragments in heavy-ion fusion-fission reactions: The influence of the level-density parameter and the neck thickness, Physical Review C 87 (2013) 054618.
 
[16] M.R. Pahlavani, D. Naderi, Study of fusion cross-section in heavy-ion fusion-fission reactions at around fusion barrier energies using the Langevin dynamical approach, European Physical Journal A 48 (2012) 129.
 
[17] M.R. Pahlavani, D. Naderi, S.M. Mirfathi, Dynamical Simulation Of γ-Ray Multiplicity In Heavy Ion Fusion–Fission Reactions Based On Langevin Equations, Modern Physics Letters A 26 (2011) 1323.
 
[18] M.R. Pahlavani, P. Mehdipour, Study of photofission fragment mass distribution of 232Th, 238U, 237Np and 240Pu isotopes in various γ-ray energies, International Journal of Modern Physics E 27 (2018) 1850018.
 
[19] A. Deppman, E. Andrade-II, V. Guimarães, G.S. Karapetyan, N.A. Demekhina,Photofission of 232Th and 238U at intermediate energies, Physical Review C 87 (2013) 054604.
 
[20] D.H. Morse, A.J. Antolak, B.L. Doyle, Photofission in uranium by nuclear reaction gamma-rays, Nuclear Instruments and Methods in Physics Research B 261 (2007) 378-381.
 
[21] C. Signarbieux, M. Montoya, M. Ribrag, C. Mazur, C. Guet, P. Perrin, M. Maurel, Evidence for nucleon pair breaking even in the coldest scission configurations of 234U and 236U, Journal de Physique Lettres 42 (1981) 437-440.
 
[22] P. Armbruster, International Conference “Nuclei far from stability”, Helsingor, DK, CERN 81-09 (1981)675.
 
[23] F.J. Hambsch, H.H. Knitter, C.B. Jorgensen, The positive odd-even effects observed in cold fragmentation-are they real?, Nuclear Physics A 554 (1993) 209-222.
 
[24] A. Benoufella, G. Barreau, M. Asghar, P. Audouard, F. Brisard, T.P. Doan, M. Hussonnois, B. Leroux, J. Trochon, M.S. Moore, Measurement of fragment mass-energy correlations for 248Cm (s, f): far-out asymmetric fission and cold fragmentations, Nuclear Physics A 565 (1993) 563-572.
[25] J.H. Hamilton, A.V. Ramayya, J. Kormicki, W.C. Ma, Q. Lu, D. Shi, J.K. Deng, S.J. Zhu, A. Sandulescu, W. Greiner, G.M. Ter-Akopian, Y.T. Oganessian, G.S. Popeko, A.V. Daniel, J. Kliman, V. Polhorsky, M. Morhac, J.D. Cole, R. Aryaeinejad, I.Y. Lee, N.R. Johnson, F.K. McGowan, Zero neutron emission in spontaneous fission of 252Cf: a form of cluster radioactivity, Journal of Physics G 20 (1994) L85-90.
 
[26] G.M. Ter-Akopian, J.H. Hamilton, Yu. Ts. Oganessian, J. Kormicki, G.S. Popeko, A.V. Daniel, A.V. Ramayya, Q. Lu, K. Butler-Moore, W.C. Ma, J.K. Deng, D. Shi, J. Kliman, V. Polhorsky, M. Morhac, W. Greiner, A. Sandelescu, J.D. Cole, R. Aryaeinejad, N.R. Johnson, I.Y. Lee, F.K. McGowan, Neutron Multiplicities and Yields of Correlated Zr-Ce and Mo-Ba Fragment Paris in Spontaneous Fission of 252Cf, Physical Review Letters 73 (1994) 1477.
 
[27] W. Schwab, H.G. Clerc, M. Mutterer, J.P. Theobald, H. Faust, Cold Fission of 233U(nth, f), Nuclear Physics A 577 (1994) 674-690.
 
[28] A. Sandulescu, W. Greiner, Mass asymmetry in fission, fusion and mass transfer due to the fragmentation in valleys, Journal of Physics G : Nuclear Physics 3 (1977) 189-193.
 
[29] A. Sandulescu, W. Greiner, Cluster decays, Reports on Progress in Physics 55 (1992) 1423-1481.
 
[30] A. Sandulescu, A. Florescu, F. Carstoiu, W. Greiner, J.H. Hamilton, A.V. Ramayya, B.R.S. Babu, Isotopic yields for the cold fission of 252Cf, Physical Review C 54 (1996) 258-265.
 
[31] Y.X. Dardenne, R. Aryaeinejad, S.J. Asztalos, B.R.S. Babu, K. Butler-Moore, S.Y. Chu, J.D. Cole, M.W. Drigert, K.E. Gregorich, J.H. Hamilton, J. Kormicki, I.Y. Lee, R.W. Lougheed, Q.H. Lu, W.-C. Ma, M.F. Mohar, K.J. Moody, S.G. Prussin, A.V. Ramayya, J.O. Rasmussen, M.A. Stoyer, J.F. Wild, Observation of cold fission in 242Pu spontaneous fission, Physical Review C 54 (1996) 206-210.
 
[32] S. Kumar, R.K. Gupta, W. Scheid, Super-Asymmetric Cold Fission and Exotic Cluster-Decay, International Journal of Modern Physics E 3 (1994) 195-218.
 
[33] F. Gonnenwein, A. Moller, M. Cronni, M. Hesse, M. Wostheinrich, H. Faust, G. Fioni, S. Oberstedt, Cold binary and ternary fission, Nuovo Cimento A 110 (1997) 1089-1095.
 
[34] E.K. Hulet, J.F. Wild, R.J. Dougan, R.W. Lougheed, J.H. Landrum, A.D. Dougan, M. Schadel, R.L. Hahn, P.A. Baisden, C.M. Henderson, R.J. Dupzyk, K. Sümmerer, G.R. Bethune, Bimodal symmetric fission observed in the heaviest elements, Physical Review Letters 56 (1986) 313-316.
 
[35] A.V. Ramayya, J.H. Hamilton, B.R.S. Babu, S.J. Zhu, et al., Structure of Vacuum and Elementary Matter, in Proceedings of the International Conference on Nuclear Structure: 1996, Wilderness, South Africa (WorldScientific, in press).
 
[36] R. Smolanczuk, Properties of the hypothetical spherical superheavy nuclei, Physical Review C 56 (1997) 812-824.
 
[37] A. Staszczak, A. Baran, W. azarewicz, Spontaneous fission modes and lifetimes of superheavy elements in the nuclear density functional theory, Physical Review C 87 (2013) 024320.
 
[38] D.N. Poenaru, R.A. Gherghescu, Fission decay of 282Cn studied using cranking inertia Journal of Physics G: Nuclear and Particle Physics 41 (2014) 125104.
 
[39] D.C. Hoffman, T.M. Hamilton, M.R. Lane, Spontaneous fission, in: D.N. Poenaru (Ed.), Nuclear Decay Modes, Institute of Physics Publishing IOP, Bristol, 1996 393–432 Chapter 10.
 
[40] M.R. Pahlavani, O.N. Ghodsi, M. Zadehrafi,4He, 10Be, 14C, and 16O light-fragment-accompanied cold ternary fission of the 250Cm isotope in an equatorial three-cluster model, Physical Review C 96 (2017) 054612.
 
[41] K.P. Santhosh, A. Joseph, Cluster emission in superdeformed Sr isotopes in the ground state and formed in heavy-ion reaction, Pramana - Journal of Physics 64 (2005) 39-46.
 
[42] K.P. Santhosh, R.K. Biju, S. Sabina, The systematic study of spontaneous fission versus alpha decay of superheavy nuclei, Journal of Physics G: Nuclear and Particle Physics 36 (2009) 115101.
 
[44] J. Blocki, J. Randrup, W.J. Swiatecki, C.F. Tsang, Proximity forces, Annals of Physics NY 105 (1977) 427-462.
 
[45] J. Blocki, W.J. Swiatecki, Ageneralization of the Proximity Force Theorem, Annals of Physics NY 132 (1981) 53-65.
 
 [46] C.L. Guo, G.L. Zhang, X.Y. Le, Study of the universal function of nuclear proximity potential from density-dependent nucleon–nucleon interaction, Nuclear Physics A 897 (2013) 54-61.
 

[47] D.N. Poenaru, M. Ivascu, A. Sandulescu ,W. Greiner, Atomic nuclei decay modes by spontaneous emission of heavy ions, Physical Review C 32(1985) 572-581.

 
[48] G. Audi, A.H. Wapstra, The 1995 update to the atomic mass evaluation Nuclear Physics A 595 (1995) 409-480.
 
[49] A.H. Wapstra, G. Audi, C. Thibault, The Ame2003 atomic mass evaluation: (I). Evaluation of input data, adjustment procedures, Nuclear Physics A 729 (2003) 129-336.
 
[50] G. Audi, F.G. Kondev, M. Wang, W.J. Huang, S. Naimi, The NUBASE2016 evaluation of nuclear properties, Chinese Physics C 41 (2017) 030001.
 
[51] D.N. Poenaru, W. Greiner, R.A. Gherghescu, Energy Released In Ternary Fission, Atomic Data and Nuclear Data Tables 68 (1998) 91-147.
 

[52] V.K. Utyonkov, N.T. Brewer, Yu. Ts. Oganessian, K.P. Rykaczewski, F.Sh. Abdullin, S.N. Dmitriev, R.K. Grzywacz, M.G. Itkis, K. Miernik, A.N. Polyakov, J.B. Roberto, R.N. Sagaidak, I.V. Shirokovsky, M.V. Shumeiko, Yu. S. Tsyganov, A.A. Voinov, V.G. Subbotin, A.M. Sukhov, A.V. Sabel'nikov, G.K. Vostokin, J.H. Hamilton, M.A. Stoyer, S.Y. Strauss, Experiments on the synthesis of superheavy nuclei 284Fl and 285F in the 239,240Pu+48Ca reactions, Physical Review C 92 (2015) 034609.

 
[53] Z. Ren, C. Xu, Spontaneous fission half-lives of heavy nuclei in ground state and in isomeric state, Nuclear Physics A 759 (2005) 64-78.
 
[54] A.V. Karpov, V.I. Zagrebaev, Y. Martinez Palenzuela, L. Felipe Ruiz, W. Greiner, Decay Properties and Stability of Heaviest Elements, International Journal of Modern Physics E 21 (2012) 1250013.
 
[55] K.P. Santhosh, R.K. Biju, S. Sahadevan, Semi-empirical formula for spontaneous fission half life time, Nuclear Physics A 832 (2010) 220-232.