بازدهٔ ایزوتوپی و نیمهعمر شکافت خودبه خودی هستهٔ فوق سنگین ²⁸⁴Fl

محمدرضا پهلوانی*، مهدی جوهری فرد دانشگاه مازندران، دانشکده علوم پایه، گروه فیزیک هستهای دریافت: 1397/07/11 ویرایش نهائی: 1397/11/29 پذیرش: 1397/12/25

چکیدہ

در این پژوهش شکافت خودبه خودی هستهٔ فوق سنگین I²⁸⁴Fl با درنظر گرفتن پتانسیل کولنی و مجاورتی مورد مطالعه قرار داده ایم انرژی تولید شده در هر شکافتگی Q، سد شکافت (V-Q)، نفوذ پذیری، ثابت واپاشی و بازدهٔ شکافت رابرای هر شکافتگی محاسبه نموده ایم با توجه به عدم تقارن جرم و بار شکافت پذیری مطلوب در شکافت خودبه خودی دو گانه برای بالاترین مقدار Q و کمترین مقدار (V-Q) رخ می دهد. برای شکافت خودبه خودی هستهٔ I²⁸⁴Fl ترین بازده برای شکافتگی منجر به ایزو توپ I³⁶⁴ و کمترین مقدار (N-S2,Z=54) رخ می دهد. برای شکافت خودبه خودی هستهٔ I³⁴⁴ بالاترین بازده برای شکافتگی منجر به ایزو توپ I³⁶⁴ (N=82,Z=54) به عنوان یکی از پاره های شکافت حودبه خودی هستهٔ I³⁴⁴ بالاترین بازده برای شکافتگی منجر به ایزو توپ تولید شده به عنوان پاره های شکافت نشان دهندهٔ این است که هسته های جادویی دوگانه و لایه های بستهٔ نزدیک به آنها دارای بیشترین بازدهٔ شکافت می اشند. ثابت واپاشی را برای هر کدام از شکافت های دو تایی به طور جداگانه محاسبه و با استفاده از مجموع آنها به عنوان ثابت واپاشی کل، نیمه عمر شکافت خودبه خودی این هسته را به دست آورده و با نتایج تو محاصل از روابط نیمه تجربی مقایسه نمودیم. این مقایسه نشان می دهد که نتایج حاصل از روش محاسبه مسته محاسبه و با استفاده از روابط نیمه تجربی به داده های تری مقایسه نشان می دهد که نتایج حاصل از روش محاسبه مستقیم نسبت به نتایج حاصل از روابط نیمه تجربی به داده های تجربی نزدیکتر است.

كليدواژ گان: شكافت خودبه خودي، هسته هاي فوق سنگين، بازدهٔ ايزوتوپي، نيمه عمر، سد شكافت

مقدمه

یکی از مهمترین و پیچیدهترین اندرکنشهای هستهای، شکافت خودبه خودی عناصر سنگین و فوق سنگین می باشد. هسته های فوق سنگین می توانند به دو پاره (شکافت دو تایی) و یا سه پاره (شکافت سه تایی) تقسیم شوند. بیشترین احتمال شکافت هسته های فوق سنگین به صورت شکافت دو تایی اتفاق می افتد، به طوری که دو پاره شکافت پس از غلبه بر سد شکافت گسیل می شوند. در سال های اخیر داده های تجربی زیادی در باب شکافتگی خود به خودی سرد هسته های

فوق سنگین جمع آوری شده است. این داده ها واپاشی خوشه های سنگین با اعداد جرمی بین A=12 تا A=34 تا را نیز شامل می شوند [1]. انرژی تولید شده در شکافت (Q) بین دو پاره شکافت تقسیم می شود. در سال 1939 هان¹ و استراسمن [2] کشف کردند که هستهٔ اورانیوم پس از بمباران به وسیلهٔ نو ترون به دو پارهٔ غیر هماندازه تقسیم می شود. به دنبال این کشف، بوهر² و ویلر³ [3] بر پایهٔ مدل قطره مایعی نظریهٔ شکافت را ارائه نمودند. با توجه به نقش اساسی شکافت در تولید انرژی هسته ای، مطالعات متعدد نظری [6-4] و تجربی [8-7] در مورد آن انجام گرفته است. شکافت می تواند

¹ Hann ² Bohr ³ Wheeler

^{*} نويسنده مسئول:m.pahlavani@umz.ac.ir

[31] خو ديه خو دى Cf به و سيلهٔ کو مار 7 و همکار ان پیش بینی و توسط گاننوین⁸ و همکاران [3] بهطور تجربی مشاهده گردید. مورد دیگر از مشاهدهٔ پاره شکافت جادویی دوگانه ¹³²Sn، شکافت ایزوتوپهای فوق سنگین Fm و Md است [34]. ایزوتوپهای Cf و *Cm* یک ناحیهٔ گذار بین آکتنیدهای سبک و منطقهٔ شکافت دو قلهای هسته های Fm و Md تشکیل مىدھند بەطورىكە بىشترىن بازدە براى شكافت آکتنیدها هنگامی حاصل میگردد که پارهٔ سنگین تر در مجاورت هستهٔ جادویی دوگانه ¹³²Sn قرار داشته باشد [35]. اسمولانچک⁹ و همکاران [36] جزئیات واپاشی ایزوتوپهای زوج-زوج فوق سنگین با عدد اتمی در محدودة 170<u><Z</u><170 را با استفاده از مدل میکروسکیی-ماکروسکیی در یک فضای تغییر شکل یافتهٔ چند بعدی مورد مطالعه قرار دادند. آنها در این مطالعات برای هستهٔ مادر و پارههای شکافت تغییر شکلهای با تقارن محوری در نظر گرفتند. استازچاک¹⁰و همکاران [37] مدهای اصلی واپاشی هستههای زوج-زوج فوق سنگین واقع در محدوده پروتونى126≥Z≥108 و نوترونى 188≥N4≥N4 را ييش بيني نموده و نيمه عمر شكافت اين هسته ها را محاسبه نمودند. همچنین روشی برای بهبود دقت شکافت خودبهخودی هستههای فوق سنگین مبتنی بر انتگرال اکشن و اینرسی کرنکینگ¹¹ توسط پوانارو¹² و هافمن¹³ و همکاران ارائه گردید **[38،۳9]. معمولاً** برای مطالعه واياشي ۵، واياشي خوشهاي و شکافت خودبهخودی هستههای سنگین و فوق سنگین از پتانسیل دافعه کولنی و جاذبه هستهای مجاورتی¹⁴

- 11 Crank ing
- ¹². Poenaru
- 13 Hoffman
- ¹⁴ Proximity Potential

بهصورت خودبهخودي و يا القايي از طريق واكنش هستهٔ هدف با یرتابههایی مانند نوترون [۱۰،۱۱]، پروتون [14-12]، ذرات آلفا همچنين واکنش هسته های سنگین شتابدار (واکنش همجوشی - شکافت) [15-17] و پرتو گامای پر انرژی (شکافت فوتونى 1)[20-18] رخ دهد. مطالعات تجربي شكافت سرد در اوایل دههٔ 80 توسط سیگناربیکس² [21] و آرمبر وستر³ [22] أغاز شد. شكافت خودبه خودي سرد بسیاری از آکتنیدها به پارههایی با اعداد جرمی بین 70 تا 160 مشاهده و مورد مطالعه قرار گرفته است [27-21]. همچنين چندين مورد از گسيل خوشههاي سنگين با انرژی برانگیختگی درونی نزدیک بهصفر بهطور تجربی مشاهده گردیده است. اولین تلاشها برای مشاهدهٔ تجربی شکافت خودبه خودی سرد با استفاده از آشكارساز نيمههادي Ge براي شكافت خودبه خودي هستهٔ ²⁵²Cf انجام گرفته است. ترکیبهای دوتایی از یارەھاى Mo- ¹⁰⁴Mo - ¹⁴⁸Ba ¹⁰⁴Zr - ¹⁴⁸Ce یارەھاي ¹⁴⁶Ba مورد مشاهده قرار گرفتند¹⁰⁸Mo - ¹⁴⁴Ba [25،۲6]. نتایج حاصل از این نوع آزمایشات ایدهٔ نظری باز آرایشی گذار سرد تعدادی از هسته ها از حالت پایهٔ هستهٔ مادر به حالت يايهٔ دو يارهٔ نهايي را مورد تأييد قرار داد [28،۲9]. در سال 1996 ساندولسکو⁴ و همکاران [30] و داردن⁵ و همكاران [31] بهترتيب شكافت خودبهخودی سرد ایزوتوپهای ^{242}Pu و ^{252}Cf را بەوسىلە گاماسفر⁶كە مجموعەاي شامل 72 آشكارساز بود، مورد آزمایش قرار داده و ارتباط بین دو پاره شكافت را بهوضوح مشاهده نمودند. هستهٔ جادویی دوگانه ¹³²Sn بهعنوان یکی از یارههای شکافت

- ¹ photon induced fission
- ² Signarbieax
- ³ Armbruster
- ⁴ Sandulescu
- ⁵ Dardenne
- ⁶ Gamasphere
- 7 Kumar

⁸ Gonnenwein

⁹ Smolanczuk

¹⁰ Staszczak

 $Q = M - \sum_{i=1}^{2} m_{i}$ $P = M - \sum_{i=1}^{2} m_{i}$ $P = \sum_{i=1}^{2} m_{$

و r فاصلهٔ بین مراکز این دو پاره میباشد که برابر است با $C_2 = S + C_1 + C_2$ با $r = s + C_1 + C_2$ و c_2 شعاعهای مرکزی سوزمان¹ دوپاره شکافتاند که با شعاع R_i پارهها بهصورت زیر مرتبط اند (شکل1ب)

$$C_i = R_i - \left[\frac{b^2}{R_i}\right], \qquad 3$$

به طوری که b پارامتر پخشیدگی سطحی هسته ای است که در بازه (1 و 0) تغییر می کند. در این پژوهش d را مساوی 0/86 fm در نظر گرفتیم. *R*i شعاع خالص هر پاره شکافت می باشد که از طریق رابطهٔ نیمه تجربی زیر با عدد جرمی هستهٔ مادر و دو پاره شکافت مرتبط است [44]:

$$R_i = 1.28A_i^{\frac{1}{3}} - 0.76 + 0.8A^{-\frac{1}{3}}$$

 $\mu = \mu$ همچنین، در رابطهٔ 2 l اندازه حرکت زاویه ای، $\mu = \frac{mA_1A_2}{A_1+A_2}$ جرم کاهیده دو پاره شکافت و m جرم متوسط نوکلئون می باشد. V_p پتانسیل مجاورتی هسته است که با استفاده از رابطهٔ زیر تعریف می شود [٤٤،٤٥]:

$$V_p(s) = 4\pi\gamma b \left[\frac{C_1 C_2}{C_1 + C_2}\right] \varphi(\varepsilon)$$
 5

استفاده می شود [43-40]. در این مقاله بازده ایزوتو یے را برای شکافتگی های متفاوت هسته فوق سنگین ²⁸⁴Fl با در نظرگرفتن سد پتانسیل بهصورت مجموع پتانسیل های کولنی و مجاورتی محاسبه نموده و با استفاده از آن نیمهعمر شکافت خودبهخودی این هسته را بهدست آوردیم. در این محاسبات اثرات یوستهای در ايجاد يارەھاى شكافت ⁷²Ni، ⁸²Ge، ايجاد يارەھاى ¹³⁶Xe ،¹³⁴Te ،¹²⁸Sn و ¹³⁶Ye به وضوح قابل مشاهده است. اثرات لایهای در محاسبهٔ بازدهٔ شکافت برای شکافتگی های منجر به پاره های شکافت جادویی دوگانه، جادویی یا با لایهٔ بسته در مجاورت لایههای جادویی بهخوبی قابل توصيف است. در اين پژوهش، ثابت واپاشی برای هر شکافتگی مجزا، ثابت شکافت کل(مجموع ثابتهای واپاشی مجزا) و سرانجام نيمهعمر شكافت خودبه خودي هسته ²⁸⁴Fl محاسبه گردید. در بخش2 فرمولها و روابط مورد استفاده در این محاسبات توصیف شده است. نتایج حاصل از محاسبات بهصورت یک سری از جداول و منحنی ها در بخش3 ارائه گردیده و با استفاده از این اطلاعات نيمهعمر شكافت خودبهخودي هسته فوق سنگين ²⁸⁴Fl محاسبه و با نتایج حاصل از روابط نیمه تجربی و دادههای تجربی مقایسه و مورد بحث و بررسی قرار گرفته است. نهایتاً یک نتیجه گیری خلاصه شده در بخش4 ارائه شده است.

محاسبات نظرى

هرگاه مقدار Q، انرژی تولید شده در فرایند شکافت، مثبت باشد، بدین مفهوم است که این فرآیند بهصورت خودبهخودی میتواند رخ دهد. انرژی تولید شده در شکافت خودبهخودی Q، با استفاده از رابطهٔ زیر بهدست میآید:

¹ Süzmann

بهدست آوردیم. در این رابطه Λ ثابت شکافت کل است که مجموع ثابت و اپاشی شکافتگی های مجزا می باشد. که مجموع ثابت و اپاشی شکافتگی های مجزا می باشد. $w = \frac{\omega}{2\pi} = \frac{2E}{h}$ بیانگر بسامد برخورد با سد یا همان تعداد برخوردها در واحد زمان و E انرژی ارتعاشی است که از رابطهٔ نیمه تجربی [47]: $E_v = Q \left\{ 0.056 + 0.039 exp \left[\frac{(4-A_2)}{2.5} \right] \right\}$ بهدست می آید. بازده نسبی به صورت نسبت احتمال نفوذ از سد i امین شکافتگی به مجموع احتمالات نفوذ همه شکافتگی های ممکن تعریف می شود:

$$Y(A_i, Z_i) = \frac{P(A_i, Z_i)}{\sum P(A_i, Z_i)}$$
11

شکل1. الف: پیکربندی تماسی پارههای شکافت s=0 ب:0 <۶ بهطوریکه s فاصلهٔ میان سطوح مجاور دو پاره شکافت و r فاصلهٔ میان مراکز پارهها میباشد.

نتایج حاصل از محاسبات و تجزیه و تحلیل آنها

اختلاف مابین پتانسیل اندرکنش که بهصورت مجموع پتانسیل های کولنی و مجاورتی در نظر گرفته شدند و انرژی تولید شده در شکافت، پتانسیل سدی¹ (Q-V) انرژی تولید شده در شکافت، پتانسیل سدی¹ (Q-V) نامیده می شود. مقدار Q را برای هر شکافتگی مجزای هستهٔ فوق سنگین P^{24} با استفاده از جداول استاندارد جرم [15-48]، محاسبه و با استفاده از آن (Q-V) را برای هر شکافتگی ممکن بهصورت تابعی از عدم تقارن جرم و بار P_A

 $\gamma = 0.9517 \left[1 - 1.7826 \frac{(N-Z)^2}{A^2} \right] MeV fm^{-2}$ 6

در این رابطه Z،N و A بهترتیب عدد نوترونی، اتمی و جرمی هستهٔ شکافنده میباشند. در رابطهٔ 9 تابع پتانسیل مجاورتی میباشد که بهصورت زیر تعریف میشود [45]:

7

9

$$\begin{split} \varphi(\varepsilon) &= \begin{cases} -4.41e^{\frac{-\varepsilon}{0.7176}} & for \ \varepsilon > 1.9475 \\ \\ -1.7817 + 0.9270 + 0.0169\varepsilon^2 \\ -0.05148\varepsilon^3 & for \ 0 \le \varepsilon \le 1.9475 \end{cases} \end{split}$$

که در آن $\frac{s}{b} = 3$ متغیر بدون بعد می باشد. با استفاده از تقریب *WKB* یک بعدی، نفوذپذیری در سد با استفاده از رابطهٔ زیر بهدست می آید:

$$T_{\frac{1}{2}} = \frac{\ln(2)}{\lambda} = \frac{\ln(2)}{\nu P}$$
$$\left(\lambda = \lambda_1 + \lambda_2 + \dots + \lambda_n\right)$$

```
<sup>1</sup> Driving Potential
```

تماسی¹ محاسبه نمودیم. برای هر شکافتگی، اعداد جرمی پارههای شکافت A1 و A2 بهگونهای انتخاب میشوند که برای آن (V-Q) نسبت به عدد اتمی پارهها کمینه باشد.

محاسبهٔ پتانسیل سدی (V-Q)

برای شکافت خودبه خودی هستهٔ V-Q، $(V-Q)^{284}Fl$ را برای پیکربندی تماسی دو پاره شکافت محاسبه نمودیم و نمودار (V-Q) را برحسب عدد جرمی یکی از پارههای شکافت، AI در شکل2 نشان دادهایم. بهعلت اثرات پوستهای برای یک یا هردو پاره شکافت، درههای نامتقارن جرمی بهوضوح در این شکل مشهود است. تركيبهاي دوگانهٔ پارههاي شكافت مربوط بهكمينهٔ انرژی پتانسیل بیشترین احتمال وقوع شکافت خودبه خودی را دارند که در این شکل به وضوح قابل مشاهدهاند. همان طور که در شکل2 به وضوح دیده می شود، اولین کمینه نمودار مربوط به جفت پاره است. همان گونه که در شکل 2 می توان ${}^{4}He + {}^{280}Cn$ مشاهده نمود کمینههایی برای (V-Q) برای پارههای شکافت جادویی و جادویی دوگانه یا لایههای بسته در مجاورت أنها ديده مي شود كه نشان دهندهٔ اثرات پوستهای در شکافت خودبه خودی دوگانهٔ هستهٔ فوق سنگين ²⁸⁴Fl اند. همچنين دو ناحيهٔ عميق در بردارنده تعدادی کمینه پتانسیل سدی (V-Q) را بهوضوح در شكل2 مي توان مشاهده نمود. در ناحيهٔ اول شکافتگی $Ge^{+202}Pb$ دیده می شود که دارای يوستة جادويي نوتروني N=50 و يوستة يروتوني جادویی Z=82 بهترتیب برای یاره هایZ=82 و ²⁰² می،باشد. شکافتگیهای دیگر دارای کمینه در اين ناحيه ⁷⁸Zn+²⁰⁶Po ⁷²Ni+²¹²Rn و می باشند که ایزو توپ های ⁸⁶Se+¹⁹⁸Hg و

²¹²Rn در آنها بهترتیب دارای پوستههای جادویی Z=28 و N=126 هستند. سایر کمینه های یتانسیل در این ناحیه پارههایی را شامل می شوند که دارای پوسته های بسته در مجاورت اعداد جادویی هستند. در ناحیهٔ دوم شکافتگیهای شامل ایزوتوپهای Sn دارای يوستهٔ جادويي يروتوني Z=50 هستند، در اين ناحيه همچنین شکافتگی $Te^{+152}Sm$ وجود دارد که در آن پاره ¹³²Te هستهای با پوستهٔ نزدیک جادویی دو گانه با Z=52 و N=80 است. پاره شکافت Z=52 در شكافتگى ¹³⁴Te+¹⁵⁰Sm داراى عدد نوترونى جادويي N=82 مي باشد. همچنين در شکافتگی $Nd^{136}Xe^{+148}Nd$ پوستهٔ جادویی در عدد نوترونی N=82 و پوستهٔ نزدیک جادویی در عدد پروتونى Z=52 قابل مشاهده است. مقادير ا و $(V ext{-}Q)$ برای همه شکافتگی های مجزا در جدول Qآورده شدهاند.

¹ Touching Configuration

شکل2. نمودار پتانسیل سدی (V-Q) شکافتگیهای ممکن در شکافت خودبهخودی هسته فوق سنگین Fl²⁸⁴ برحسب عدد جرمی یکی از پارههای شکافت A_I

شکل3. نمودار بازده نسبی شکافتگیهای دوگانه در شکافت خودبهخودی هسته فوق سنگین ²⁸⁴Fl برحسب عدد جرمی پارههای شکافت ₄ A و A2؛ پارههای شکافت دارای بازدههای بالاتر در شکل مشخص شدهاند.

محمدرضا پهلوانی و مهدی جوهری فرد

بازدهٔ ایزوتوپی و نیمهعمر شکافت خودبخودی....

46

A ₁	A ₂	Q(MeV)	(V-Q)	Yield(%)	A ₁	A ₂	Q(MeV)	(V-Q)	Yield
⁴ He	²⁸⁰ Cn	10.795	5.36304	0	⁷⁶ Ni	²⁰⁸ Rn	220.206	32.45004	(%)
⁸ Be	²⁷⁶ Ds	21.438	19.9798	0	⁷⁸ Zn	²⁰⁶ Po	244.5922	21.20123	0
¹⁰ Be	²⁷⁴ Ds	17.1125	21.03991	0	⁸⁰ Zn	²⁰⁴ Po	238.9096	26.09612	0
¹² Be	²⁷² Ds	7.8222	27.58604	0	⁸² Ge	²⁰² Pb	260.2761	16.87036	8.19×10 ⁻⁶
¹⁴ C	²⁷⁰ Hs	40.7901	22.45089	0	⁸⁴ Ge	²⁰⁰ pb	253.319	23.08821	0
¹⁶ C	²⁶⁸ Hs	32.396	28.41262	0	⁸⁶ Se	¹⁹⁸ Hg	270.3772	17.18627	1.15×10 ⁻⁵
¹⁸ C	²⁶⁶ Hs	22.86	35.78401	0	⁸⁸ Se	¹⁹⁶ Hg	264.63	22.24332	0
²⁰ O	²⁶⁴ Sg	54.3438	30.47257	0	⁹⁰ Se	¹⁹⁴ Hg	259.904	26.31214	0
²² O	²⁶² Sg	51.27	31.53214	0	⁹² Kr	¹⁹² Pt	273.9783	22.437	0
²⁴ O	²⁶⁰ Sg	43.872	37.08872	0	⁹⁴ Kr	¹⁹⁰ Pt	267.575	28.23147	0
²⁶ Ne	²⁵⁸ Rf	72.099	33.5147	0	⁹⁶ Sr	¹⁸⁸ Os	282.981	22.06205	0
²⁸ Ne	²⁵⁶ Rf	63.398	40.46761	0	98Sr	¹⁸⁶ Os	278.342	26.14108	0
³⁰ Mg	²⁵⁴ No	93.081	34.07442	0	¹⁰⁰ Sr	¹⁸⁴ Os	271.994	31.9589	0
³² Mg	²⁵² No	86.878	38.61442	0	¹⁰² Zr	¹⁸² W	288.754	23.50052	0
³⁴ Mg	²⁵⁰ No	79.037	44.90063	0	¹⁰⁴ Zr	¹⁸⁰ W	284.28	27.49271	0
³⁶ Si	²⁴⁸ Fm	109.462	36.44374	0	¹⁰⁶ Zr	¹⁷⁸ W	277.877	33.44216	0
³⁸ Si	²⁴⁶ Fm	102.901	41.51638	0	¹⁰⁸ Mo	¹⁷⁶ Hf	294.252	24.44322	0
⁴⁰ Si	²⁴⁴ Fm	94.52	48.49528	0	¹¹⁰ Mo	¹⁷⁴ Hf	289.308	28.98173	0
⁴² S	²⁴² Cf	127.1707	36.56395	0	¹¹² Ru	¹⁷² Yb	303.806	20.92076	3.63×10-7
⁴⁴ S	²⁴⁰ Cf	120.133	42.25591	0	¹¹⁴ Ru	¹⁷⁰ Yb	299.906	24.46376	0
⁴⁶ Ar	²³⁸ Cm	149.2479	32.68508	0	¹¹⁶ Pd	¹⁶⁸ Er	311.743	18.12976	2.78×10 ⁻⁵
⁴⁸ Ar	²³⁶ Cm	143.345	37.29899	0	¹¹⁸ Pd	¹⁶⁶ Er	309.2347	20.32988	9.89×10 ⁻⁷
⁵⁰ Ar	²³⁴ Cm	135.525	43.8952	0	¹²⁰ Cd	¹⁶⁴ Dy	318.845	15.29279	2.35×10 ⁻³
⁵² Ca	²³² Pu	164.8233	32.99354	0	¹²² Cd	¹⁶² Dy	317.7144	16.16428	5.52×10 ⁻⁴
⁵⁴ Ca	²³⁰ Pu	157.146	39.4988	0	¹²⁴ Sn	¹⁶⁰ Gd	325.0962	12.42939	2.19×10 ⁻¹
⁵⁶ Ca	²²⁸ Pu	146.733	48.79584	0	¹²⁶ Sn	¹⁵⁸ Gd	325.625	11.69074	5.98×10 ⁻¹
⁵⁸ Ti	²²⁶ U	172.701	40.1178	0	¹²⁸ Sn	¹⁵⁶ Gd	324.817	12.31414	2.05×10 ⁻¹
⁶⁰ Ti	²²⁴ U	165.528	46.2235	0	¹³⁰ Te	¹⁵⁴ Sm	328.728	11.15066	1.71
⁶² V	²²² Pa	162.24	57.23761	0	¹³² Te	¹⁵² Sm	328.871	10.87218	2.43
⁶⁴ V	²²⁰ Pa	165.02	53.46268	0	¹³⁴ Te	¹⁵⁰ Sm	328.5047	11.12784	1.53
⁶⁶ Cr	²¹⁸ Th	181.273	44.70642	0	¹³⁶ Xe	¹⁴⁸ Nd	332.7572	8.72617	87.6
⁶⁸ Mn	²¹⁶ Ac	189.156	44.07027	0	¹³⁸ Xe	¹⁴⁶ Nd	329.8182	11.60363	8.83×10 ⁻¹
⁷⁰ Fe	²¹⁴ Ra	205.337	34.8887	0	¹⁴⁰ Xe	¹⁴⁴ Nd	325.6545	15.73043	1.72×10 ⁻³
⁷² Ni	²¹² Rn	231.8061	22.55999	0	¹⁴² Ba	¹⁴² Ce	331.295	11.0458	2.34
⁷⁴ Ni	²¹⁰ Rn	226.985	26.50643	0					

جدول1. مقادیر Q واکنش، پتانسیل سدی(V-Q) و بازدهٔ نسبی شکافتگیهای دوگانهٔ زوج-زوج در شکافت خودبهخودی هستهٔ فوق سنگین ²⁸⁴Fl (بازدههای نسبی کمتر از ¹⁰⁷ صفر در نظر گرفته شدهاند).

احتمال نفوذ در سد و بازده نسبی

با استفاده از روابط8 و 11 احتمال نفوذ¹ در سد پتانسیل و بازدهٔ نسبی² را برای هر شکافتگی ممکن محاسبه نموديم و نمودار آن را بهصورت تابعي از اعداد جرمی دو پارهٔ شکافت A₁ و A₂ در شکل3 نشان دادهایم. با استفاده از این شکل واضح است که در شكافت خودبهخودي هستهٔ فوق سنگين ²⁸⁴Fl شكافتگی Xe+¹⁴⁸Nd دارای بیشترین بازده (87/6 درصد) می باشد. در این شکافتگی ایزوتوپ ¹³⁶ با Z=54 و N=82 و Z=54 یک هستهٔ نزدیک به جادویی دوگانه است؛ بیشترین بازدهٔ بعدی به تر تیب برای شکافتگی های ¹³⁰Te+¹⁵⁴Sm و ¹³⁰Te+¹⁵⁴Sm رخ می دهد. در اين شكافتگىھا، ايزوتوپھاى Te داراى پوستة نوتروني و پروتوني نزديک به جادويي است. در شکل 4 نمودار ميلهاي بازدة شكافت خودبه خودي هستة فوق سنگین ²⁸⁴Fl که برای پارههای با عدد جرمی زوج-زوج و فرد-فرد محاسبه شده است بهصورت تابعی از عدد جرمی یکی از پارههای شکافت رسم و با یکدیگر مقایسه شده است. همچنان که از این شکل مشهود است بازدهٔ نسبی ایجاد پارههای با عدد جرمی زوج از پارههای با عدد جرمی فرد بیشتر است. این مطلب نیز بهوضوح تأييد كننده نقش اثرات لايهاي در بازده نسبي مى باشد.

محاسبهٔ نیمهعمر شکافت خودبهخودی هسته فوق سنگین ²⁸⁴Fl

یس از محاسبهٔ احتمال نفوذ درسد پتانسیل برای هر یک از شکافتگی های مجزا با استفاده از تقریب WKB معادلهٔ 8 و به کمک فرکانس برخورد به سد و همچنین با استفاده از رابطهٔ نیمه تجربی انرژی ارتعاشی (معادلهٔ10) ثابت وایاشی را برای هر یک از شکافتهای دوگانه بهطور جداگانه محاسبه نموده و نتایج حاصل از آن را در جدول شماره 2 نمایش دادهایم. با بهدست آوردن λi مربوط به هر شکافتگی مجزا، ثابت شکافت كل را از طريق جمع اين ثابتها بهدست آورديم. نيمهعمر شكافت خودبهخودي هستة فوق سنگين ²⁸⁴Fl که با استفاده از این روش (رابطهٔ **9)** محاسبه شده است برابر است با 0/147 ms. برای ارزیابی نتایج حاصل از این روش بهعلت عدم دسترسی بهدادههای حاصل از روش های دیگر (یا عدم انجام محاسبهٔ تئوری در مورد این هستهٔ فوق سنگین) نیمهعمر محاسبه شده را با نیمهعمر تجربی و همچنین نیمهعمرهای تخمین زدەشدە بر اساس روابط نيمەتجربى با يكديگر مقايسە

نمودیم. با توجه به اینکه نتایج حاصل از این روابط نیمه تجربی به صورت لگاریتم می باشد و نیمه عمرها بر حسب ثانیه و یا سال به صورت لگاریتمی محاسبه شده اند، لگاریتم نیمه عمر محاسبه شده از طریق محاسبه ثابت شکافت برای همهٔ ثابت های شکافتگی دو گانه ممکن در این تحقیق بر ابر با 3/83- به دست آمد.

¹ Penetration Probability

شکل4. نمودار میلهای شکافتگی های زوج-زوج و فرد-فرد مربوط به شکافت خودبهخودی هستهٔ فوق سنگین ²⁸⁴Fl برحسب عدد جرمی یکی از پارههای شکافت A_I

13

12

$$\begin{split} \log_{10} T_{1/2} &= 21.8 + c_1 \frac{(Z-90-\nu)}{A} + \\ &\quad c_2 \frac{(Z-90-\nu)^2}{A} + c_3 \frac{(Z-90-\nu)^3}{A} \\ &\quad + c_4 \frac{(Z-90-\nu)(N-Z-52)^2}{A} \end{split}$$
Horizon II, Introduction II, Interpretent of the transformation of tr

$$\log_{10} T_{1/2} = 1146.44 - 75.3153 \left(\frac{Z^2}{A} \right) + 1.63792 \left(\frac{Z^2}{A} \right)^2 - 0.0119827 \left(\frac{Z^2}{A} \right)^3$$

+
$$1.63792 (Z^2/A)^2$$

- $0.0119827 (Z^2/A)^3$
+ $B_f (7.23613$
- $0.0947022 Z^2/A)$ + h
 η (1 ارائه نمودند. با استفاده از این رابطه لگاریتم نیمهعمر
 η به نیمهعمر $Z^{2,4}$ - $Z^{2,4}$
 H
 $M_{1,2}$
 $M_{2,2}$
 $M_{2,2}$
 $M_{2,3}$
 $M_{2,4}$
 $M_{2,4}$

³ Ren ⁴ Karpov

⁵ Santosh

جدل3. مقایسه ی نتایج نیمهعمر شکافت خودبخودی هسته²⁸⁴Fl

²⁸⁴ Fl	Ref.[53]	Ref.[54]	Ref.[55]	(This work)	(Expt.)
$logT_{\frac{1}{2}}(s)$	2.89	-0.99	-0.32	-3.83	-2.602
$T_{\frac{1}{2}}$	776.25s	0.10s	0.48s	0.147ms	2.5ms

$$\begin{split} \log_{10} T_{1/2} &= a \left(\frac{Z^2}{A} \right) + b \left(\frac{Z^2}{A} \right)^2 \\ &+ c \left(\frac{N-Z}{N+Z} \right) \\ &+ d \left(\frac{N-Z}{N+Z} \right)^2 \\ &+ e \qquad (14) \end{split}$$

Užluzra izabaza, nc-un tilizbarda kuris aniš
dugu luj (lida 28/0- pocur a) juc.

جدول2 ثابت واپاشی هر شکافتگی دوگانه شکافت خودبهخودی هسته فوق سنگین ²⁸⁴Fl (ثابتهای واپاشی کمتر از ¹-8⁻¹ در این جدول ذکر نشدهاند).

Aı	A2	$\lambda_i(s^{-1})$	Aı	A2	$\lambda_i(s^{-1})$	
⁴ He	²⁸⁰ Cn	⁵⁰ Cn 2.78011		¹⁶⁷ Er	0.000129	
⁸ Be	⁸ Be ²⁷⁶ Ds 1.01212		¹¹⁸ Pd	¹⁶⁶ Er	0.000329	
⁹ Be	²⁷⁵ Ds	0.01017	¹¹⁹ Ag	¹⁶⁵ Ho	0.001424	
¹⁰ Be	²⁷⁴ Ds	0.00885	¹²⁰ Cd	¹⁶⁴ Dy	0.806454	
¹¹ Be	²⁷³ Ds	0.000025	¹²¹ Cd	¹⁶³ Dy	0.024551	
¹² Be	²⁷² Ds	0.000001	¹²² Cd	¹⁶² Dy	0.18879	
¹³ B	²⁷¹ Mt	0.000003	¹²³ Cd	¹⁶¹ Dy	0.001715	
¹⁴ C	²⁷⁰ Hs	0.000523	¹²⁴ Sn	¹⁶⁰ Gd	76.79021	
¹⁵ C	²⁶⁹ Hs	0.000002	¹²⁵ Sn	¹⁵⁹ Gd	6.30164	
¹⁶ C	²⁶⁸ Hs	0.0000002	¹²⁶ Sn	¹⁵⁸ Gd	209.7591	
⁷² Ni	²¹² Rn	0.0000004	¹²⁷ Sn	¹⁵⁷ Gd	5.849377	
⁷⁸ Zn	²⁰⁶ Po	0.000003	¹²⁸ Sn	¹⁵⁶ Gd	71.75805	
⁸² Ge	²⁰² Pb	0.002295	¹²⁹ Sb	¹⁵⁵ Eu	20.53673	
⁸³ Ge	²⁰¹ Pb	0.000028	¹³⁰ Te	¹⁵⁴ Sm	604.0533	
⁸⁴ Ge	²⁰⁰ pb	0.0000003	¹³¹ Te	¹⁵³ Sm	28.2163	
⁸⁶ Se	¹⁹⁸ Hg	0.003344	¹³² Te	¹⁵² Sm	861.1417	
⁸⁷ Se	¹⁹⁷ Hg	0.000009	¹³³ Te	¹⁵¹ Sm	21.2937	
⁸⁸ Se	¹⁹⁶ Hg	0.000002	¹³⁴ Te	¹⁵⁰ Sm	540.4294	
⁹² Kr	¹⁹² Pt	0.0000032	¹³⁵ I	¹⁴⁹ Pm	445.272	
⁹⁶ Sr	¹⁸⁸ Os	0.0000101	¹³⁶ Xe	¹⁴⁸ Nd	313.63	
¹⁰² Zr	¹⁸² W	0.0000017	¹³⁷ Xe	¹⁴⁷ Nd	173.0164	
¹⁰⁸ Mo	¹⁷⁶ Hf	0.0000006	¹³⁸ Xe	¹⁴⁶ Nd	313.5251	
¹¹² Ru	¹⁷² Yb	0.000119	¹³⁹ Xe	¹⁴⁵ Nd	0.988355	
¹¹³ Ru	¹⁷¹ Yb	0.000008	¹⁴⁰ Xe	¹⁴⁴ Nd	0.60399	
¹¹⁴ Ru	¹⁷⁰ Yb	0.000007	¹⁴¹ Ba	¹⁴³ Ce	167.4358	
¹¹⁵ Rh	¹⁶⁹ Tm	0.0000094	¹⁴² Ba	¹⁴² Ce	835.6867	
¹¹⁶ Pd	¹⁶⁸ Er	0.009317				

زیرا ایزوتوپ ¹³⁶ دارای پوستهٔ جادویی نوترونی 82–*N* و پوستهٔ نزدیک جادویی پروتونی 25–*X* است. برای این هسته ثابت واپاشی بهازای هر یک از شکافتگیهای مجزا محاسبه گردید و ثابت شکافت از مجموع این ثابتهای واپاشی بهدست آمد، از این طریق نیمهعمر هستهٔ فوق سنگین ²⁸⁴*Fl* برابر از این روش و نتایج بهدست آمده از فرمولهای نیمه تجربی با دادههای تجربی نشان میدهد که نتایج حاصل از این روش با نیمهعمر تجربی توافق نسبتاً خوبی دارد.

منابع

[1] P.B. Price, Complex radioactivity, *Nuclear Physics A* 502 (1989) 41-58.

[2] O. Hahn, F. Strassmann, Über den Nachweis und das Verhalten der bei der Bestrahlung des Urans mittels Neutronen entstehenden Erdalkalimetalle, *Naturwissenschaften* **27** (1939) 11-15.

[3] N. Bohr, J.A. Wheeler, The Mechanism of Nuclear Fission, *Physical Review* 56 (1939) 426-450.

[4] M.R. Pahlavani, S.M. Mirfathi, Neutroninduced fission of even- and odd- mass plutonium isotopes within a fourdimensional Langevin framework, *Physical Review C* **96** (2017) 014606.

[5] M.R. Pahlavani, S.M. Mirfathi, Dynamical simulation of neutron-induced fission of uranium isotopes using fourdimensional Langevin equations, *Physical Review C* **93** (2016) 044617.

[6] M.R. Pahlavani, D. Naderi, Influence of dynamical parameters on pre-scission particles and fission probability in heavy-ion collisions, *Physical Review C* **83** (2011) 024602.

مقایسهٔ نیمهعمرهای محاسبه شده و تجربی نشان میدهد که نیمهعمرهای اندازهگیری شده با مقادیر محاسبه شده اختلاف زیادی دارد. برای توجیه این اختلاف دلایل زیادی میتوان ارائه نمود. یکی از دلایل این اختلاف میتواند ناشی از شرکت واپاشیهای مختلف از جمله واپاشی آلفا و گسیل خوشههای سنگین باشد که برای هستههای فوق سنگین دارای احتمال نسبتاً بالایی هستند. از طرف دیگر با توجه بهاینکه این هستهها دارای نیمهعمر کوتاهی هستند بیایین در طبیعت وجود ندارند و باید از طریق اندرکنشهای هستهٔ مرکب تولید شوند که با توجه به چند مرحلهای بودن آزمایش خطای اندازه گیری نیمهعمر خیلی بالاست و بنابراین میتواند اختلاف بیشتری را ایجاد کند.

نتيجه گيرى

در این تحقیق فرایند شکافت خودبه خودی هستهٔ فوق سنگین ²⁸⁴Fl را با در نظر گرفتن یتانسیلهای کولنی و مجاورتی بهعنوان یتانسیل هستهای مورد بررسی قرار دادیم. برای هر شکافتگی مجزا پتانسیل سدی $(V ext{-}Q)$ و انرژی تولید شده در واکنش، Q را بهدست آورديم. همچنين ثابت واياشي، احتمال تونل زنی از سد شکافت و نیمهعمر شکافت را محاسبه نموديم. از طرف ديگر نيمهعمر شكافت اين هسته را با استفاده از چند فرمول نيمه تجربي بهدست آورديم. نتايج حاصل از این محاسبات نشان میدهند که احتمال شکافت برای پارههای شکافت با عدد جرمی زوج بیشتر از یاره های با عدد جرمی فرد است. با استفاده از کمینه کردن پتانسیل اندرکنش ترکیبهای مناسب از دو پارههای شکافت را مشخص نمودیم. تحلیل نتایج نشان میدهند که برای شکافت خودبهخودی ²⁸⁴Fl بیشترین بازده برای شکافتگی ¹³⁶Xe+¹⁴⁸Nd بهدست می آید

V.A. Rubchenya, S.K. Sahiev, W.H. Trzaska, E. Vardaci, Proton induced fission of ²³²Th at intermediate energies, *Physics of Atomic Nuclei* **79** (2016) 1367-1374.

[15] D. Naderi, M.R. Pahlavani, S.A. Alavi, Anisotropy of the angular distribution of fission fragments in heavy-ion fusion-fission reactions: The influence of the level-density parameter and the neck thickness, *Physical Review C* 87 (2013) 054618.

[16] M.R. Pahlavani, D. Naderi, Study of fusion cross-section in heavy-ion fusionfission reactions at around fusion barrier energies using the Langevin dynamical approach, *European Physical Journal A* **48** (2012) 129.

[17] M.R. Pahlavani, D. Naderi, S.M. Mirfathi, Dynamical Simulation Of γ -Ray Multiplicity In Heavy Ion Fusion–Fission Reactions Based On Langevin Equations, *Modern Physics Letters A* **26** (2011) 1323.

[18] M.R. Pahlavani, P. Mehdipour, Study of photofission fragment mass distribution of 232 Th, 238 U, 237 Np and 240 Pu isotopes in various γ -ray energies, *International Journal of Modern Physics E* **27** (2018) 1850018.

[19] A. Deppman, E. Andrade-II, V. Guimarães, G.S. Karapetyan, N.A. Demekhina,Photofission of ²³²Th and ²³⁸U at intermediate energies, *Physical Review C* 87 (2013) 054604.

[20] D.H. Morse, A.J. Antolak, B.L. Doyle, Photofission in uranium by nuclear reaction gamma-rays, *Nuclear Instruments and Methods in Physics Research B* **261** (2007) 378-381.

[21] C. Signarbieux, M. Montoya, M. Ribrag, C. Mazur, C. Guet, P. Perrin, M. Maurel, Evidence for nucleon pair breaking even in the coldest scission configurations of ²³⁴U and ²³⁶U, *Journal de Physique Lettres* **42** (1981) 437-440.

[7] D.J. Hinde, M. Dasgupta, J.R. Leigh, J.C. Mein, C.R. Morton, J.O. Newton, H. Timmers, Conclusive evidence for the influence of nuclear orientation on quasifission, *Physical Review C* 53 (1996) 1290.

[8] K. Nishio, H. Ikezoe, I. Nishinaka, S. Mitsuoka, K. Hirose, T. Ohtsuki, Y. Watanabe, Y. Aritomo, S. Hofmann, Evidence for quasifission in the sub-barrier reaction of ${}^{30}\text{Si}{+}^{238}\text{U}$, *Physical Review C* 82 (2010) 044604.

[9] D.J. Hinde, R. du Rietz, M. Dasgupta, R.G. Thomas, L.R. Gasques,

Two Distinct Quasifission Modes in the ${}^{32}S+{}^{232}Th$ Reaction, *Physical Review Letters* **101** (2008) 092701

[10] M.R. Pahlavani, S.M. Mirfathi, Probing energy dissipation, γ -ray and neutron multiplicity in the thermal neutron-induced fission of ²³⁹Pu, *European Physical Journal A* **52** (2016) 95.

[11] M.R. Pahlavani, S.M. Mirfathi, Dynamics of neutron-induced fission of 235U using four-dimensional Langevin equations, *Physical Review C* **92** (2015) 024622.

[12] A. Deppman, E. Andrade-II, V. Guimarães, G.S. Karapetyan, A.R. Balabekyan, N.A. Demekhina, *Physical Review C* **88** (2013) 024608.

[13] Y. Ayyad, J. Benlliure, E. Casarejos, H. Álvarez-Pol, A. Bacquias, A. Boudard, M. Caamaño, T. Enqvist, V. Föhr, A. Kelić-Heil, K. Kezzar, S. Leray, D. Mancusi, C. Paradela, D. Pérez-Loureiro, R. Pleskač, J.L. Rodríguez-Sánchez, D. Tarrío, Protoninduced fission of ¹⁸¹Ta at high excitation energies, *Physical Review C* **89** (2014) 054610.

[14] K.B. Gikal, E.M. Kozulin, A.A. Bogachev, N.T. Burtebaev, A.V. Edomskiy, I.M. Itkis, M.G. Itkis, G.N. Knyazhev, K.V. Kovalchuk, T.N. Kvochkina, E. Piasecki,

محمدرضا پهلواني و مهدي جوهري فرد

بازدهٔ ایزوتویی و نیمهعمر شکافت خودبخودی....

Journal of Physics G : Nuclear Physics 3 (1977) 189-193.

[29] A. Sandulescu, W. Greiner, Cluster decays, *Reports on Progress in Physics* 55 (1992) 1423-1481.

[30] A. Sandulescu, A. Florescu, F. Carstoiu,
W. Greiner, J.H. Hamilton, A.V. Ramayya,
B.R.S. Babu, Isotopic yields for the cold fission of ²⁵²Cf, *Physical Review C* 54 (1996) 258-265.

[31] Y.X. Dardenne, R. Aryaeinejad, S.J. Asztalos, B.R.S. Babu, K. Butler-Moore, S.Y. Chu, J.D. Cole, M.W. Drigert, K.E. Gregorich, J.H. Hamilton, J. Kormicki, I.Y. Lee, R.W. Lougheed, Q.H. Lu, W.-C. Ma, M.F. Mohar, K.J. Moody, S.G. Prussin, A.V. Ramayya, J.O. Rasmussen, M.A. Stoyer, J.F. Wild, Observation of cold fission in ²⁴²Pu spontaneous fission, *Physical Review C* 54 (1996) 206-210.

[32] S. Kumar, R.K. Gupta, W. Scheid, Super-Asymmetric Cold Fission and Exotic Cluster-Decay, *International Journal of Modern Physics E* **3** (1994) 195-218.

[33] F. Gonnenwein, A. Moller, M. Cronni, M. Hesse, M. Wostheinrich, H. Faust, G. Fioni, S. Oberstedt, Cold binary and ternary fission, *Nuovo Cimento A* **110** (1997) 1089-1095.

[34] E.K. Hulet, J.F. Wild, R.J. Dougan, R.W. Lougheed, J.H. Landrum, A.D. Dougan, M. Schadel, R.L. Hahn, P.A. Baisden, C.M. Henderson, R.J. Dupzyk, K. Sümmerer, G.R. Bethune, Bimodal symmetric fission observed in the heaviest elements, *Physical Review Letters* **56** (1986) 313-316.

[35] A.V. Ramayya, J.H. Hamilton, B.R.S. Babu, S.J. Zhu, et al., Structure of Vacuum and Elementary Matter, *in Proceedings of the International Conference on Nuclear Structure:* 1996, Wilderness, South Africa (WorldScientific, in press). [22] P. Armbruster, *International Conference* "Nuclei far from stability", Helsingor, DK, CERN **81-09** (1981) 675.

[23] F.J. Hambsch, H.H. Knitter, C.B. Jorgensen, The positive odd-even effects observed in cold fragmentation-are they real?, *Nuclear Physics A* 554 (1993) 209-222.

[24] A. Benoufella, G. Barreau, M. Asghar, P. Audouard, F. Brisard, T.P. Doan, M. Hussonnois, B. Leroux, J. Trochon, M.S. Moore, Measurement of fragment massenergy correlations for ²⁴⁸Cm (s, f): far-out asymmetric fission and cold fragmentations, *Nuclear Physics A* **565** (1993) 563-572.

[25] J.H. Hamilton, A.V. Ramayya, J. Kormicki, W.C. Ma, Q. Lu, D. Shi, J.K. Deng, S.J. Zhu, A. Sandulescu, W. Greiner, G.M. Ter-Akopian, Y.T. Oganessian, G.S. Popeko, A.V. Daniel, J. Kliman, V. Polhorsky, M. Morhac, J.D. Cole, R. Aryaeinejad, I.Y. Lee, N.R. Johnson, F.K. McGowan, Zero neutron emission in spontaneous fission of 252Cf: a form of cluster radioactivity, *Journal of Physics G* **20** (1994) L85-90.

[26] G.M. Ter-Akopian, J.H. Hamilton, Yu. Ts. Oganessian, J. Kormicki, G.S. Popeko, A.V. Daniel, A.V. Ramayya, Q. Lu, K. Butler-Moore, W.C. Ma, J.K. Deng, D. Shi, J. Kliman, V. Polhorsky, M. Morhac, W. Greiner, A. Sandelescu, J.D. Cole, R. Aryaeinejad, N.R. Johnson, I.Y. Lee, F.K. McGowan, Neutron Multiplicities and Yields of Correlated Zr-Ce and Mo-Ba Fragment Paris in Spontaneous Fission of ²⁵²Cf, *Physical Review Letters* **73** (1994) 1477.

[27] W. Schwab, H.G. Clerc, M. Mutterer, J.P. Theobald, H. Faust, Cold Fission of 233 U(n_{th}, f), *Nuclear Physics A* **577** (1994) 674-690.

[28] A. Sandulescu, W. Greiner, Mass asymmetry in fission, fusion and mass transfer due to the fragmentation in valleys, [45] J. Blocki, W.J. Swiatecki, Ageneralization of the Proximity Force Theorem, *Annals of Physics NY* **132** (1981) 53-65.

[46] C.L. Guo, G.L. Zhang, X.Y. Le, Study of the universal function of nuclear proximity potential from density-dependent nucleon–nucleon interaction, *Nuclear Physics A* **897** (2013) 54-61.

[47] D.N. Poenaru, M. Ivascu, A. Sandulescu ,W. Greiner, Atomic nuclei decay modes by spontaneous emission of heavy ions, *Physical Review C* **32** (1985) 572-581.

[48] G. Audi, A.H. Wapstra, The 1995 update to the atomic mass evaluation *Nuclear Physics A* **595** (1995) 409-480.

[49] A.H. Wapstra, G. Audi, C. Thibault, The Ame2003 atomic mass evaluation: (I). Evaluation of input data, adjustment procedures, *Nuclear Physics A* **729** (2003) 129-336.

[50] G. Audi, F.G. Kondev, M. Wang, W.J. Huang, S. Naimi, The NUBASE2016 evaluation of nuclear properties, *Chinese Physics C* **41** (2017) 030001.

[51] D.N. Poenaru, W. Greiner, R.A. Gherghescu, Energy Released In Ternary Fission, *Atomic Data and Nuclear Data Tables* 68 (1998) 91-147.

[52] V.K. Utyonkov, N.T. Brewer, Yu. Ts. Oganessian, K.P. Rykaczewski, F.Sh. Abdullin, S.N. Dmitriev, R.K. Grzywacz, M.G. Itkis, K. Miernik, A.N. Polyakov, J.B. Roberto, R.N. Sagaidak, I.V. Shirokovsky, M.V. Shumeiko, Yu. S. Tsyganov, A.A. Voinov, V.G. Subbotin, A.M. Sukhov, A.V. Sabel'nikov, G.K. Vostokin, J.H. Hamilton, M.A. Stoyer, S.Y. Strauss, Experiments on the synthesis of superheavy ²⁸⁵F 284 Fl and nuclei in the ^{239,240}Pu+⁴⁸Ca reactions, *Physical Review* C 92 (2015) 034609.

[36] R. Smolanczuk, Properties of the hypothetical spherical superheavy nuclei, *Physical Review C* 56 (1997) 812-824.

[37] A. Staszczak, A. Baran, W. azarewicz, Spontaneous fission modes and lifetimes of superheavy elements in the nuclear density functional theory, *Physical Review C* **87** (2013) 024320.

[38] D.N. Poenaru, R.A. Gherghescu, Fission decay of ²⁸²Cn studied using cranking inertia *Journal of Physics G*: *Nuclear and Particle Physics* **41** (2014) 125104.

[39] D.C. Hoffman, T.M. Hamilton, M.R. Lane, Spontaneous fission, in: D.N. Poenaru (Ed.), *Nuclear Decay Modes*, Institute of Physics Publishing IOP, Bristol, 1996 393–432 Chapter 10.

[40] M.R. Pahlavani, O.N. Ghodsi, M. Zadehrafi, ⁴He, ¹⁰Be, ¹⁴C, and ¹⁶O light-fragment-accompanied cold ternary fission of the ²⁵⁰Cm isotope in an equatorial three-cluster model, *Physical Review C* **96** (2017) 054612.

[41] K.P. Santhosh, A. Joseph, Cluster emission in superdeformed Sr isotopes in the ground state and formed in heavy-ion reaction, *Pramana - Journal of Physics* 64 (2005) 39-46.

[42] K.P. Santhosh, R.K. Biju, S. Sabina, The systematic study of spontaneous fission versus alpha decay of superheavy nuclei, *Journal of Physics G: Nuclear and Particle Physics* **36** (2009) 115101.

[43] K.P. Santhosh, B. Priyanka, The competition between alpha decay and spontaneous fission in odd–even and odd–odd nuclei in the range $99 \le Z \le 129$, *Nuclear Physics A* **940** (2015) 21-52.

[44] J. Blocki, J. Randrup, W.J. Swiatecki, C.F. Tsang, Proximity forces, *Annals of Physics NY* **105** (1977) 427-462.

محمدرضا پهلوانی و مهدی جوهری فرد

بازدهٔ ایزوتوپی و نیمهعمر شکافت خودبخودی....

spontaneous fission half life time, Nuclear Physics A 832 (2010) 220-232.
[53] Z. Ren, C. Xu, Spontaneous fission half-lives of heavy nuclei in ground state and in isomeric state, Nuclear Physics A 759 (2005) 64-78.
[54] A.V. Karpov, V.I. Zagrebaev, Y. Martinez Palenzuela, L. Felipe Ruiz, W. Greiner, Decay Properties and Stability of Heaviest Elements, International Journal of Modern Physics E 21 (2012) 1250013.

[55] K.P. Santhosh, R.K. Biju, S. Sahadevan, Semi-empirical formula for