Half-metallic properties and structural stability of d0-d half-Heusler compounds XYBi (X=K, Rb; Y= Sc, Ti, V, Cr)

Document Type : Full length research Paper

Authors

1 Dept. of Physics, College of Sciences, Shiraz University, Shiraz

2 Department of Physics, College of Sciences, Shiraz University, Shiraz, Iran

Abstract

Using first-principles electronic structure calculations based on density functional theory, the electronic, magnetic, and structural properties of novel d0-d half-Heusler compounds XYBi (X=K, Rb; Y =Sc, Ti, V, Cr) are investigated. The results indicate that 6 of these compounds, namely, KTiBi, RbTiBi, KVBi, RbVBi, KCrBi and RbCrBi are half-metallic ferromagnets. The half-metallic energy band-gap of these compounds were calculated in the range of 0.46-0.71 eV. A detailed study of the partial density of states showed that the p-d exchange between transition metals 3d and Bi 6p states is mainly responsible for the half-metallic behavior. The total magnetic moments of the compounds under study are in agreement with the Slater-Pauling rule Mtot=Ztot-8 and it is integer valued in a wide range around the equilibrium lattice constant, which indicates that the half-metallic property is not sensitive to the lattice parameter. Employing the structure optimization program USPEX, it is shown that the introduction of d0 alkali metal atom leads to structural stability of the above novel half-Heusler compounds. In the light of their structural stability, high Curie temperature and large half-metallic gap, the above compounds are good candidates for spintronic applications.

Keywords


[1] S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnár, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Spintronics: a spin-based electronics vision for the future, Science 294, (2001) 1488.
[2] S. Bhatti, R. Sbiaa. A. Hirohat, H. Ohno, S. Fukami, S.N. Piramanayagam1, Spintronics based random access memory: a review, Mater. Today 20, (2017) 530.
[3] R.A. de Groot, F.M. Mueller, P.G. van Engen, K.H.J. Buschow, New Class of Materials: Half-Metallic Ferromagnets, Description, Physical Review Letters 50, (1983) 2024.
[4] S. Wurmehl, G.H. Fecher, H.C. Kandpal, V. Ksenofontov, C. Felser, H.J. Lin, Investigation of Co2FeSi: The Heusler compound with highest Curie temperature and magnetic moment, Applied Physics Letters  88, (2006) 032503.
[5] I. Galanakis, P.H. Dederichs, N. Papanikolaou, Slater-Pauling behavior and origin of the half-metallicity of the fullHeusler alloys, Physical Review B 66, (2002) 174429.
[6] J.H. Park, E. Vescovo, H.J. Kim, C. Kwon, R. Ramesh, T. Venkatesan, Direct evidence for a half-metallic ferromagnet, Nature 392, (1998) 794.
[7] F.J. Jedema, A.T. Filip, B.J. Van Wees, Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve, Nature 410, (2001) 345.
[8] I. Galanakis, P. Mavropoulos, Zinc-blende compounds of transition elements with N,P, As, Sb, S, Se, and Te as half-metallic systems, Physical Review B 67, (2013) 104417.
[9] M.G. Sreenivasan, J.F. Bi, K.L. Teo, T. Liew, Systematic investigation of structural and magnetic properties in molecular beam epitaxial growth of metastable zinc-blende CrTe toward half-metallicity, Journal of Applied Physics 103, (2008) 043908.
[10] M. Sieberer, J. Redinger, S. Khmelevskyi, P. Mohn, Ferromagnetism in tetrahedrally coordinated compounds of I/II-V elements: Ab initio calculations, Physical Review B 73, (2006) 024404.
[11] R.J. Soulen Jr., J.M. Byers, M.S. Osofsky, B. Nadgorny, T. Ambrose, S.F. Cheng, P.R. Broussard, C.T. Tanaka, J. Nowak, J.S. Moodera, A. Barry, J.M. D. Coey, Measuring the Spin Polarization of a Metal with a Superconducting Point Contact, Science 282, (1998) 85.
[12] A. Stroppa, S. Picozzi, A.J. Freeman, Electronic structure and ferromagnetism of Mn-doped group-IV semiconductors, Physical Review B 68, (2003) 155203.
[13] A. Dehghan, S. Davatolhagh, d0-d half-Heusler alloys: A potential class of advanced spintronic materials, Journal of Alloys and Compounds 772, (2019) 132.
[14] A. Dehghan, S. Davatolhagh, Dirac-like half-metallicity of d0-d half-Heusler alloys, Physica C 552, (2018) 53.
 [15] D. Huang, Y.-J. Zhao, L.-J. Chen, D.-H. Chen, Y.-Z. Shao, Structural instability of epitaxial zinc-blende vanadium pnictides and chalcogenides for half-metallic ferromagnets, Journal of Applied Physics 104, (2008) 053709.
[16] J.E. Pask, L.H. Yang, C.Y. Fong, W.E. Pickett, S. Dag, Six low-strain zinc-blende half metals: An ab initio investigation, Physical Review B67, (2003) 224420.
[17] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso1, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samo, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia1, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umaril, R.M. Wentzcovitch,, QUANTUM ESPRESSO: a modular and open source software project for quantum simulations of materials, Journal of Physics: Condensed Matter 21, (2009) 395502.
[18] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters 77, (1996) 3865.
 [19] F.D. Murnaghan, The Compressibility of Media under Extreme Pressures, Proceedings of the National Academy of Sciences of the U.S.A. 30, (1994) 244.
[20] L. Feng, E.K. Liu, W.X. Zhang, W.H. Wang, G.H. Wu, First-principles investigation of half-metallic ferromagnetism of half-Heusler compounds XYZ, Journal of Magnetism and Magnetic Materials 351, (2014) 92.
[21] J.C. Slater, The Ferromagnetism of Nickel. II. Temperature Effects, Physical Review 49, (1936) 931.
[22] L. Pauling, The Nature of the Interatomic Forces in Metals, Physical Review 54, (1938) 899.
[23] N. Sivadas, M.W. Daniels, R.H. Swendsen, S. Okamoto, D. Xiao, Magnetic ground state of semiconducting transition-metal trichalcogenide monolayer, Physical Review B 91, (2015) 235425.
[24] A.O. Lyakhov, A.R. Oganov, H. Stokes, Q. Zhu, New developments in evolutionary structure prediction algorithm USPEX, Computer Physics Communications 184, (2013) 1172.
[25] Z.Y. Chen, B. Xu, G.Y. Gao, Half-metallic ferromagnetism with low magnetic moment in zinc-blende TiBi from first-principles calculations, Journal of Magnetism and Magnetic Materials 347, (2013) 14.
[26] N. Reisi, F. Ahmadian, The Study of HalfMetallicity in Zincblende CrBi (001) and VBi (001) Surfaces and CrBi/InSb (001) and VBi/InSb (001) Interfaces, Journal of Superconductivity and Novel Magnetism  30, (2017) 1231.
[27] M. Zhang, H. Hu, G. Liu, Z. Liu, Y. Cui, G. Wu, Half-Metallic Ferromagnetism in the Hypothetical Zinc-Blende VBi, Journal of Low Temperature Physics, 135, (2004) 314.
Volume 9, Issue 1
فصل بهار
May 2019
Pages 55-64
  • Receive Date: 25 January 2018
  • Revise Date: 21 February 2019
  • Accept Date: 16 March 2019