[1] J. Suhonen, From Nucleons to Nucleus, Springer-Verlag, (2007).
[2] M.R. Pahlavani, S.A. Alavi, Approximate analytical solutions of Woods-Saxon potential includin spin-oribit and centrifugal terms, Modern Physics Letters A 27 (2012) 1250167-1250180.
[3] N. Zettili, Quantum Mechanics Concepts and Applications, 2nd ed., John Wiley & Sons, (2009).
[4] P. Ring, P. Schuck, The Nuclear Many-Body Problem, Springer, New York, (1980).
[5] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. flannery, Numerical Recipes the Art of Scientific Computing, 3rd ed., Cambridge University Press, (2007).
[7] M. Hamzavi, S.M. Ikhdair, Any J-State Solution of the Duffin–Kemmer–Petiau Equation for a Vector Deformed Woods–Saxon Potential, Few-Body Systems 53 (2012) 461-471.
[8] A.N. Ikot, H. Hassanabadi, T.M. Abbey, Spin and Pseudospin Symmetries of Hellmann Potential with Three Tensor Interactions Using Nikiforov–Uvarov Method, Communications in Theoretical Physics 64 (2015) 637-643.
[9] M. Hamzavi, A.A. Rajabi, F. Koochakpoor, Approximate bound Dirac states for pseudoscalar Hulthen potential, International Journal of Modern Physics E 22 (2013) 1350035-1350047.
[10] N. Hatami, M.R. Setare, Analytical solutions of the Klein–Gordon equation for Manning–Rosen potential with centrifugal term through Nikiforov–Uvarov method, International Journal of Modern Physics E 91 (2017) 1229-1232.
[11] A.F. Nikiforov, V.B. Uvarov, Special Functions of Mathematical Physics, Birkhauser, (1988).
[12] S. Flugge, Practical Quantum Mechanics, Springer-Verlag, (1994).