[1] G. Cao, Nanostructures & nanomaterials: synthesis, properties & applications, Imperial college press, 2004.
[2] T. Hanemann, D.V. Szabó, Polymer-nanoparticle composites: from synthesis to modern applications, Materials, 3 (2010) 3468-3517.
[3] R. Das, M.E. Ali, S.B.A. Hamid, S. Ramakrishna, Z.Z. Chowdhury, Carbon nanotube membranes for water purification: a bright future in water desalination, Desalination, 336 (2014) 97-109.
[4] J. Theron, J. Walker, T. Cloete, Nanotechnology and water treatment: applications and emerging opportunities, Critical reviews in microbiology, 34 (2008) 43-69.
[5] A. Fojtik, D. Horák, K. Piksová, T.Q. Trung, T. Škereň, Magnetic and metallic nanoparticles for biomedical application, Nano Con, (2009).
[6] S.P. Beaumont, The applications of nanotechnology in electronic devices, in: Proceedings of 1994 IEEE 6th International Conference on Indium Phosphide and Related Materials (IPRM), IEEE, 1994, pp. 371-374.
[7] L. Rashidi, K. Khosravi-Darani, The applications of nanotechnology in food industry, Critical reviews in food science and nutrition, 51 (2011) 723-730.
[8] X. Qu, P.J. Alvarez, Q. Li, Applications of nanotechnology in water and wastewater treatment, Water research, 47 (2013) 3931-3946.
[9] F. Patolsky, G. Zheng, C.M. Lieber, Nanowire sensors for medicine and the life sciences, (2006).
[10] M. Franzreb, M. Siemann-Herzberg, T.J. Hobley, O.R. Thomas, Protein purification using magnetic adsorbent particles, Applied microbiology and biotechnology, 70 (2006) 505-516.
[11] T. Abraham, Economics of ceramic magnets, American Ceramic Society Bulletin, 73 (1994) 62-65.
[12] J. Smit, H.P.J. Wijn, Ferrites: physical properties of ferrimagnetic oxides in relation to their technical applications, (1959).
[13] X. Yang, X. Wang, Z. Zhang, Electrochemical properties of submicron cobalt ferrite spinel through a co-precipitation method, Journal of crystal growth, 277 (2005) 467-470.
[14] K. Rane, V. Verenkar, P. Sawant, Dielectric behaviour of MgFe2O4 prepared from chemically beneficiated iron ore rejects, Bulletin of Materials Science, 24 (2001) 323-330.
[15] Y.-L. Liu, Z.-M. Liu, Y. Yang, H.-F. Yang, G.-L. Shen, R.-Q. Yu, Simple synthesis of MgFe2O4 nanoparticles as gas sensing materials, Sensors Actuators B: Chemical, 107 (2005) 600-604.
[16] F. Foroughi, S. Hassanzadeh-Tabrizi, A. Bigham, In situ microemulsion synthesis of hydroxyapatite-MgFe2O4 nanocomposite as a magnetic drug delivery system, Materials Science and Engineering: C, 68 (2016) 774-779.
[17] N. Ma, Y. Yue, W. Hua, Z. Gao, Selective oxidation of styrene over nanosized spinel-type MgxFe3−xO4 complex oxide catalysts, Applied Catalysis A: General, 251 (2003) 39-47.
[18] H. Tian, J. Peng, T. Lv, C. Sun, H. He, Preparation and performance study of MgFe2O4/metal–organic framework composite for rapid removal of organic dyes from water, Journal of Solid State Chemistry, 257 (2018) 40-48.
[19] S.-S. Hong, Catalytic removal of carbon particulates over MgF2O4 catalysts, Reaction Kinetics and Catalysis Letters, 84 (2005) 311-317.
[20] E.M. de Moura, M.A. Garcia, R.V. Gonçalves, P.K. Kiyohara, R.F. Jardim, L.M. Rossi, Gold nanoparticles supported on magnesium ferrite and magnesium oxide for the selective oxidation of benzyl alcohol, RSC Advances, 5 (2015) 15035-15041.
[21] E. Finocchio, V. Lorenzelli, M. Trombetta, S.A. Rossini, IR study of alkene allylic activation on magnesium ferrite and alumina catalysts, Journal of the Chemical Society, Faraday Transactions, 92 (1996) 4687-4693.
[22] R. Köferstein, T. Walther, D. Hesse, S.G. Ebbinghaus, Preparation and characterization of nanosized magnesium ferrite powders by a starch-gel process and corresponding ceramics, Journal of materials science, 48 (2013) 6509-6518.
[23] S. Verma, P. Joy, Y. Khollam, H. Potdar, S. Deshpande, Synthesis of nanosized MgFe2O4 powders by microwave hydrothermal method, Materials letters, 58 (2004) 1092-1095.
[24] H. Liu, H. Liu, Synthesis of nanosize quasispherical MgFe2O4 and study of electrochemical properties as anode of lithium ion batteries, Journal of electronic materials, 43 (2014) 2553-2558.
[25] N. Mongia, A. Srivastava, D. Bansal, Effect of pH on Magnetic and Structural Properties of Low Temperature Synthesized MgFe2O4 Nanoparticles, in: AIP Conference Proceedings, AIP, 2010, pp. 394-400.
[26] M. Gateshki, V. Petkov, S.K. Pradhan, T. Vogt, Structure of nanocrystalline MgFe2O4 from X-ray diffraction, Rietveld and atomic pair distribution function analysis, Journal of applied crystallography, 38 (2005) 772-779.
[27] H.S.C. O'neill, H. Annersten, D. Virgo, The temperature dependence of the cation distribution in magnesioferrite (MgFe2O4) from powder XRD structural refinements and Mössbauer spectroscopy, American Mineralogist, 77 (1992) 725-740.
[28] A. Afkhami, M. Saber-Tehrani, H. Bagheri, Modified maghemite nanoparticles as an efficient adsorbent for removing some cationic dyes from aqueous solution, Desalination, 263 (2010) 240-248.
[29] F. Ge, M.-M. Li, H. Ye, B.-X. Zhao, Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles, Journal of hazardous materials, 211 (2012) 366-372.
[30] S. Saha, Molecular Photochemistry-Various Aspects, 2012.
[31] L.S. Tsui, W.R. Roy, M.A. Cole, Removal of dissolved textile dyes from wastewater by a compost sorbent, Coloration Technology, 119 (2003) 14-18.
[32] V. Ponnusami, S. Vikram, S. Srivastava, Guava (Psidium guajava) leaf powder: novel adsorbent for removal of methylene blue from aqueous solutions, Journal of hazardous materials, 152 (2008) 276-286.
[33] G. Asgari, A. Dargahi, S.A. Mobarakian, Equilibrium and synthetic equations for index removal of methylene blue using activated carbon from oak fruit bark, Journal of Mazandaran University of Medical Sciences, 24 (2015) 172-187.
[34] W. Konicki, D. Sibera, E. Mijowska, Z. Lendzion-Bieluń, U. Narkiewicz, Equilibrium and kinetic studies on acid dye Acid Red 88 adsorption by magnetic ZnFe2O4 spinel ferrite nanoparticles, Journal of colloid and interface science, 398 (2013) 152-160.
[35] S. Hashemian, Modified sawdust for removal of methyl violet (basic dye) from aqueous solutions, Asian Journal of chemistry, 21 (2009) 3622-3630.
[36] V. Meshko, L. Markovska, M. Mincheva, A. Rodrigues, Adsorption of basic dyes on granular acivated carbon and natural zeolite, Water research, 35 (2001) 3357-3366.
[37] K. Dutta, S. Mukhopadhyay, S. Bhattacharjee, B. Chaudhuri, Chemical oxidation of methylene blue using a Fenton-like reaction, Journal of hazardous materials, 84 (2001) 57-71.
[38] C. Sun, J.S. Lee, M. Zhang, Magnetic nanoparticles in MR imaging and drug delivery, Advanced drug delivery reviews, 60 (2008) 1252-1265.
[39] E. Casbeer, V.K. Sharma, X.-Z. Li, Synthesis and photocatalytic activity of ferrites under visible light: a review, Separation Purification Technology, 87 (2012) 1-14.
[40] Z.Y. Kong, N.X. Wong, S.W. Lum, S.Y. Tan, M.R. Khan, C.K. Cheng, The Application Of Magnesium Ferrite Photocatalyst For Photo Treatment Of Methylene Blue, Journal of Engineering Science and Technology, 10 (2015) 1-10.
[41] S. Wang, D. Li, C. Yang, G. Sun, J. Zhang, Y. Xia, C. Xie, G. Yang, M. Zhou, W. Liu, A novel method for the synthesize of nanostructured MgFe2O4 photocatalysts, Journal of Sol-Gel Science Technology, 84 (2017) 169-179.
[42] A. Manohar, C. Krishnamoorthi, Photocatalytic study and superparamagnetic nature of Zn-doped MgFe2O4 colloidal size nanocrystals prepared by solvothermal reflux method, Journal of Photochemistry Photobiology B: Biology, 173 (2017) 456-465.
[43] X. Yuan, H. Wang, Y. Wu, X. Chen, G. Zeng, L. Leng, C. Zhang, A novel SnS2–MgFe2O4/reduced graphene oxide flower-like photocatalyst: solvothermal synthesis, characterization and improved visible-light photocatalytic activity, Catalysis Communications, 61 (2015) 62-66.
[44] M. Shahid, L. Jingling, Z. Ali, I. Shakir, M.F. Warsi, R. Parveen, M. Nadeem, Physics, Photocatalytic degradation of methylene blue on magnetically separable MgFe2O4 under visible light irradiation, Materials Chemistry, 139 (2013) 566-571.
[45] A. Radoń, A. Drygała, Ł. Hawełek, D. Łukowiec, Structure and optical properties of Fe3O4 nanoparticles synthesized by co-precipitation method with different organic modifiers, Materials Characterization, 131 (2017) 148-156.
[46] K. Kirchberg, A. Becker, A. Bloesser, T. Weller, J. Timm, C. Suchomski, R. Marschall, Stabilization of Monodisperse, Phase-Pure MgFe2O4 Nanoparticles in Aqueous and Nonaqueous Media and Their Photocatalytic Behavior, The Journal of Physical Chemistry C, 121 (2017) 27126-27138.
[47] P. Hankare, S. Jadhav, U. Sankpal, R. Patil, R. Sasikala, I. Mulla, Gas sensing properties of magnesium ferrite prepared by co-precipitation method, Journal of Alloys Compounds, 488 (2009) 270-272.
[48] A. Pradeep, P. Priyadharsini, G. Chandrasekaran, Sol–gel route of synthesis of nanoparticles of MgFe2O4 and XRD, FTIR and VSM study, Journal of Magnetism and Magnetic Materials, 320 (2008) 2774-2779.
[49] W.-z. LU, B. LIU, X.-k. YOU, J.-q. LI, Sonochemical Synthesis of Nano Phase MgFe2O4 Powders [J], Electronic Components $ Materials, 2 (2005) 000.
[50] L. Zhang, X. Zhou, X. Guo, X. Song, X. Liu, Investigation on the degradation of acid fuchsin induced oxidation by MgFe2O4 under microwave irradiation, Journal of Molecular Catalysis A: Chemical, 335 (2011) 31-37.
[51] M. Pavlović, Č. Jovalekić, A. Nikolić, D. Manojlović, N. Šojić, Soft mechanochemical synthesis of MgFe2O4 nanoparticles from the mixture of α-Fe2O3 with Mg(OH)2 and Fe(OH)3 with Mg(OH)2, Materials Science and Technology, 26 (2010) 968-974.
[52] J. Fu, J. Zhang, C. Zhao, Y. Peng, X. Li, Y. He, Z. Zhang, X. Pan, N.J. Mellors, E. Xie, Solvent effect on electrospinning of nanotubes: the case of magnesium ferrite, Journal of Alloys Compounds, 577 (2013) 97-102.
[53] A.A. Thant, S. Srimala, P. Kaung, M. Itoh, O. Radzali, A. Fauzi, Low temperature synthesis of MgFe2O4 soft ferrite nanocrystallites, (2010).
[54] K. Suslick, Homogeneous sonochemistry, Ultrasound: it's chemical, physical, and biological effects, (1988) 123-163.
[55] S. Sharma, R. Kumar, S. Kumar, V.S. Kumar, M. Knobel, V. Reddy, A. Banerjee, M. Singh, Magnetic study of Mg0.95Mn0.05Fe2O4 ferrite nanoparticles, solid state communications, 141 (2007) 203-208.
[56] M. Singh, A comparative study of the electrical and the magnetic properties and Mössbauer studies of normal and hot pressed MgxMn1− xFe2O4 ferrites, Journal of Magnetism and Magnetic Materials, 299 (2006) 397-403.
[57] M. Singh, S. Sud, Controlling the properties of magnesium–manganese ferrites, Materials Science and Engineering: B, 83 (2001) 180-184.
[58] R. Cornell, U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses, in, VCH Verlagsgesellshaft GMBH Weinheim, Germany, 1996.
[59] J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium, physica status solidi (b), 15 (1966) 627-637.