[1] F.C. Frank, On the theory of liquid crystals, Discuss. Faraday Soc. 25 (1958) 19-28.
[2] J. Stelzer, R. Berardi, C. Zannoni, Flexoelectric Coefficients for Model Pear Shaped Molecules from Monte Carlo Simulations, Molecular Crystals and Liquid Crystals 352 (2000) 187- 194.
[3] R.B. Meyer, Piezoelectric Effects In Liquid Crystals, Physical Review Letters 22 18 (1969) 918-921.
[4] M.A. Osipov, The order parameter dependence of the flexoelectric coefficients in nematic liquid crystals, Journal de Physique Letters 45 16 (1984) 823-826.
[5] J. Prost, J.P. Marcerou, On the microscopic interpretation of flexoelectricity, Le. J. De. Physique, 38 (1977) 315-324.
[6] J.P. Straley, Theory of piezoelectricity in nematic liquid crystals, and of the cholesteric ordering,
Physical Review A 14 5 (1976) 1835–1841.
[8] A. Ferrarini, Shape model for the molecular interpretation of the flexoelectric effect, Physical Review E 64 2 (2001) 021710/1–11.
[9] A. Ferrarini, C. Greco, G.R. Luckhurst, On the flexoelectric coefficients of liquid crystal monomers and dimers: a computational methodology bridging length-scales, Journal of Material Chemistry 17 11 (2007) 1039–1042.
[10] Y. Singh, U.P. Singh, density functional theory of the flexoelectric effects in nematic liquids, Physical Review A 39 8 (1989) 4254-4262.
[11] A.M. Somoza, P. Tarazona, Density functional theory of the elastic constants of a nematic liquid crystal, Molecular Physics 72 4 (1991) 911-926.
[12] J. Stelzer, R. Berardi, C. Zannoni, Flexoelectric effects in liquid crystals formed by pear-shaped molecules. A computer simulation study, Chemical Phyics Leters 299 (1999) 9–16.
[13] D.L. Cheung, S.J. Clark, M.R. Wilson, Calculation of flexoelectric coefficients for a nematic liquid crystal by atomistic simulation, Journal of Chemical Physics 121 18 (2004) 9131–9139.
[14] A.V. Emelyanenko, M.A. Osipov, Theoretical model for the discrete flexoelectric effect and a description for the sequence of intermediate smectic phases with increasing periodicity, Physical Review E 68 5 (2003) 051703/1–16.
[15] N.V. Madhusudana, Chapter 2. Flexoelectro-optics and measurements of flexo-coefficients. In eds. A. Buka and N. Eber, Flexoelectricity in Liquid Crystals. Theory, Experiments and applications, Imperial College Press, London, )2012( 33–60.
[16] P.S. Salter, C. Tschierske, S.J. Elston, E.P. Raynes, Flexoelectric measurements of a bent-core nematic liquid crystal, Physical Review E 84 3 (2011) 031708/1–5.
[17] B. Kundu, A. Roy, R. Pratibha, N.V. Madhusudana, Flexoelectric studies o made of rod like and bent-core molecules, Applied Physics Letters 95 8 (2009) 081902/1–3.
[18] C.C. Tartan, S.J. Elston. Hybrid aligned nematic based measurement of the sum (e1+e3) of the flexoelectric coefficients, Journal of Applied Physics 117 (2015) 064107/1-7
[19] L. Jianfei, Y. Huairui, Y. Zhang, D. Shizhuo and L. Xuan Flexoelectric effect in cylindrical hybrid aligned nematic liquid crystals cell, Liquid Crystals, Published online: 28 Sep 2018.
[20] A. Poniewierski, J. Stecki, Statistical theory of the elastic constants of nematic liquid crystals, Molecular Physics 38 (1979) 1931-1940.
[21] A. Avazpour, M. Moradi, The direct correlation functions of hard Gaussian overlap and hard ellipsoidal fluids, Physica B 392 (2007) 242-250.
[22] F. Barmes, M. Ricci, C. Zannoni, D.J. Cleaver, Computer simulations of hard pear-shaped particles, Physical Review E 68 (2003) 021708/1-11.
[25] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in Fortran 77, (Cambridge University Press, second edition, Cambridge )1997).
[26] L.J. Ellison, Computer simulations of tapered particles. Ph.D. thesis, Sheffield Hallam University, (2008).