[1] J. Nowotny, C.C. Sorrell, L.R. Sheppard, T. Bak, Solar-hydrogen: Environmentally safe fuel for the future, International Journal of Hydrogen Energy 30 (2005) 521–544.
[2] P.V. Kamat, Meeting the clean energy demand : Nanostructure architectures for solar energy, Physical Chemistry C 111 (2007) 2834–2860.
[3] A. Hagfeldt, M. Graetzel, Light-induced redox reactions in nanocrystalline systems, Chemical Reviews 95 (1995) 49–68.
[4] R. Krol, V. De, Y. Liang, J. Schoonman, Solar hydrogen production with nanostructured metal oxides,
Materials Chemistry 20 (2008) 2311–2320.
[5] F.E. Osterloh, Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting, Chemical Society Reviews 42 (2013) 2294–2320.
[6] A.J. Nozik, Photochemical diodes, Applied Physics A 30 (1977) 567-568.
[7] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238 (1972) 37–38.
[8] K. Maeda, K. Domen, Photocatalytic water splitting: Recent progress and future challenges, Physical Chemistry Letters 1 (2010) 2655–2661.
[9] M.G. Walter, Solar water splitting cells, Chemical Reviews 110 (2010) 6446–6473.
[10] A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chemical Society Reviews 38 (2009) 253–278.
[11] T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting, Chemical Society Reviews 43 (2014) 7520–7535.
[12] K. Sivula, Metal oxide photoelectrodes for solar fuel production, surface traps, and catalysis, Physical Chemistry Letters 4 (2013) 1624–1633.
[13] K. Sayama, A. Nomura, Z. Zou, R. Abe, Photoelectrochemical decomposition of water on nanocrystalline BiVO4 film electrodes under visible light, Chemical Communications 23 (2003) 2908–2909.
[14] K. Sayama, Photoelectrochemical decomposition of water into H2 and O2 on porous BiVO4 thin-film electrodes under visible light and significant effect of Ag ion treatment, Physical Chemistry B 110 (2006) 11352–11360.
[15] M. Long, R. Beranek, W. Cai, H. Kisch, Hybrid semiconductor electrodes for light-driven photoelectrochemical switches, Electrochimica Acta 53 (2008) 4621–4626.
[16] M. Long, W. Cai, H. Kisch, Visible light induced photoelectrochemical properties of n-BiVO4 and n-BiVO4/p-Co3O4, Physical Chemistry C 112 (2008) 548–554.
[17] A. Iwase, A. Kudo, Photoelectrochemical water splitting using visible-light-responsive BiVO
4 fine particles prepared in an aqueous acetic acid solution,
Materials Chemistry 35 (2010) 7536–7542.
[18] H. Ye, J. Lee, J.S. Jang, A.J. Bard, Rapid screening of BiVO4 -based photocatalysts by scanning electrochemical microscopy (SECM) and studies of their photoelectrochemical properties, Physical Chemistry C 114 (2010) 13322–13328.
[19] S.P. Berglund, D.W. Flaherty, N.T. Hahn, A.J. Bard, C.B. Mullins, Photoelectrochemical oxidation of water using nanostructured BiVO4 films, Physical Chemistry C 115 (2011) 3794–3802.
[20] K. Sayama, Effect of carbonate ions on the photooxidation of water over porous BiVO
4 film photoelectrode under visible light,
Chemistry Letters 39 (2010) 17–19.
[21] Y.H. Ng, A. Iwase, A. Kudo, R. Amal, Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting, Physical Chemistry Letters 1 (2010) 2607–2612.
[22] H. Ye, H.S. Park, A.J. Bard, Screening of electrocatalysts for photoelectrochemical water oxidation on W-doped BiVO4 photocatalysts by scanning electrochemical microscopy, Physical Chemistry C 115 (2011) 12464–12470.
[23] T. Lindgren, H. Wang, N. Beermann, L. Vayssieres, A. Hagfeldt, S. Lindquist, Aqueous photoelectrochemistry of hematite nanorod array, Solar Energy Materials and Solar Cells 71 (2002) 231–243.
[24] F. Bouhjar, B. Bessaïs, B. Marí, Ultrathin-layer α-Fe2O3 deposited under hematite for solar water splitting, Journal of Solid State Electrochemistry 22 (2018) 2347-2356
[25] A. Duret, M. Grätzel, Visible Light-Induced Water Oxidation on Mesoscopic α-Fe2O3 films made by ultrasonic spray pyrolysis, Physical Chemistry B 109 (2005) 17184–17191.
[26] M. Spichiger‐Ulmann, J. Augustynski, Aging effects in n‐type semiconducting WO3 films, Applied Physics 54 (1983) 6061–6064.
[27] B.D. Alexander, P.J. Kulesza, I. Rutkowska, J. Augustynski, Metal oxide photoanodes for solar hydrogen production, Materials Chemistry 20 (2008) 2298–2303.
[28] Y. Miseki, H. Kusama, H. Sugihara, K. Sayama, Cs-modified WO3 photocatalyst showing efficient solar energy conversion for O2 production and Fe (III) ion reduction under visible light, Physical Chemistry Letters 1 (2010) 1196–1200.
[29] Q. Jia, K. Iwashina, A. Kudo, Facile fabrication of an efficient BiVO4 thin film electrode for water splitting under visible light irradiation, Proceedings of the National Academy of Sciences 109 (2012) 11564–11569.
[30] Z. Chen, Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols, Materials Research 25 (2010) 3–16.
[31] B. Liu, C. Wu, J. Miao, P. Yang, All inorganic semiconductor nanowire mesh for direct solar water splitting, ACS Nano 8 (2014) 11739–11744.
[32] S.M. Golabi, An introduction to electroanalytical chemistry, Sotoudeh, Tabriz, (1389).
[32] م. گلابی، مقدمهای بر الکتروشیمی تجزیه، انتشارات ستوده، تبریز، (1389).