[1] S. Pfalzner, An Introduction to Inertial Confinement Fusion, Taylor & Francis, CRC Press, (2006).
[2] S. Atzeni, The physics of inertial fusion, CRC Press, (2004).
[3] D.A.Callahan, M.C. Herrmann, M. Tabak. Progress in heavy ion target capsule and hohlraum design, Laser and Particle Beams 203 (2002), 405-410.
[4] G.O. Allshouse, and et al. Deposition and drive symmetry for light ion ICF targets. Nuclear Fusion 39 7 (1999) 893.
[5] J. Lindl, Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain, Physics of Plasma2 (1995) 3933-4024.
[6]M. Skandari, Principle of Nuclear Fusion, Shiraz university Publications, (1995)
[7] N.A.Tahir, K.A. Long, Numerical simulation and theoretical analysis of implosion, ignition and burn of heavy-ion-beam reactor-size ICF targets. Nuclear Fusion 23 (1983), 887-889.
[8] M. Basko. High gain DT targets for heavy ion beam fusion, Nuclear fusion 32 (1992, 1515-1529.
[9] M.M. Basko. DEIRA. A1-D 3-T Hydrodynamic Code for Simulating ICF Targets Driven by Fast Ion Beam, Version 4. Institute for Theoretical and Experimental Physics Moscow. (2001).
[10] T. Someya, and et al., Heavy-ion beam illumination on a direct-driven pellet in heavy-ion inertial fusion, Physical Review Special Topics7 (2004), 044701-1, 13.
[11] S. Kawata, and et al., Robust heavy-ion-beam illumination in direct-driven heavy-ion inertial fusion, Nuclear Instruments And Methods In Physics Research Sextion A 577 (2007) 327-331.
[12] S. Kawata. DT fuel concentration in an ICF pellet, AIP Conference Proceedings.369 (1996) 339-344.
[13] Y.Iizuka, and, et al. Study on target structure for direct-indirect hybrid implosion mode in heavy ion inertial fusion. Nuclear Instruments and Methods in Physics Research Section A 606 1-2 (2009) 165-168.
[14] Y.Iizuka, and, et al. Direct-Indirect Hybrid Implosion in Heavy Ion Inertial Fusion. Journal of Plasma Fusion Research 8 (2009), 1200-1203.
[15] S. Koseki, and et al. Direct drive fuel target optimization in HIF. EPJ Web of Conferences 59 (2013) 09001.
[16] S. Kawata, et al., Direct–indirect mixed implosion mode in heavy ion inertial fusion, Nuclear Instruments And Methods In Physics Research Sextion A 24 (2007) 332-336.
[17] A.I. Ogoyski, T. Someya, S. Kawata, Code OK1—Simulation of multi-beam irradiation on a spherical target in heavy ion fusion, Computer Physics Communications 157 2 (2004) 160-17.
[18]. L.Gholamzadeh and A. Ghasemizad, Non-Uniformity of Heavy-Ion Beam Irradiation on a Direct-Driven Pellet in Inertial Confinement Fusion, Plasma Science and Technology 13 44 (2011).
[19] S. Kawata, and et al., Robust heavy-ion-beam illumination in direct-driven heavy-ion inertial fusion, Nuclear Instruments And Methods In Physics Research Sextion A 577 (2007) 327-331.
[21] F.F Chen, lntroduction to plasma physics and controlled fusion. Plenum Press new york and london (1974).
[22] J.P. Boris, and et al., LCPFCT-A flux-corrected transport algorithm for solving generalized continuity equations, DTIC Document, (1993).
[23] R.M. More, et al., A new quotidian equation of state (QEOS) for hot dense matter, Physics of Fluids, 31, (1988), 3059-3078.
[24] D.Varentsov. Energy loss dynamics of intense heavy ion beams interacting with dense matter. PhD thesis, Technische Universität, Darmstadt (2003).
[25] R.Cranfill, and R. More, IONEOS: a fast, analytic, ion equation-of-state routine,Los Alamos Scientific Laboratory, NM USA (1978).
[26] M.M. Basko, On the scaling of the energy gain of ICF targets, Nuclear Fusion 35 (1995) 87.
[27] J.P. Christiansen, D.E.T.F. Ashby, K.V. Roberts. MEDUSA a one-dimensional laser fusion code. Computer Physics Communications 7 5 (1974) 271-287.
[28] T.A. Mehlhorn, Finite material temperature model for ion energy deposition in ion-driven ICF targets. Journal of Applied Physics 52 11 (1980) 6522- 6532.
[29] J.F. Ziegler. The Stopping of Energetic Light Ions in Elemental Matter, Journal of Applied Physics 85 (1999)
[30] A.R. Bell, Rutherford Laboratory Report, RL-80-091 (1981)).
[31] H. Mazaki, Equations of State of Atoms for the Thomas-Fermi Theory, Bulletin of the Institute for Chemical Research, (1974). 52,681-689.
[32] J. Soltani-Nabipour, D. Sardari, G. Cata-Danil .Sensitivity of the Bragg peak curve to the average ionization potential of the stopping medium. Romanian Journal of Physics 54 3-4 (2009) 321-330.
[334] R. Froehlich, Heavy Ion Beam Driven Inertial Confinement Fusion Target Studies And Reactor Chamber Neutronic Analysis, Nuclear Engineering and Design 73 (1982) 201-222.