[1] M.F. Rivet et al., Correlations between signals of the liquid-gas phase transition in nuclei, Nuclear Physics A 749 (2005) 73.
[2] O.N. Ghodsi, H.R. Moshfegh, R. Gharaei, Role of the saturation properties of hot nuclear matter in the proximity formalism, Physical ReviewC 88 (2013) 034601.
[3] H.A. Bethe, supernova mechanism, Reviews of Modern Physics62 (1990) 801.
[4] N.K. Glendenning, Compact Stars, New York: Springer (1997).
[5] K. Strobel, C. Schaab, M.K. Weigel, Properties of non-rotating and rapidly rotating protoneutron stars, Astron. Astrophys. 350 (1999) 497.
[6] P. Haensel, A.Y. Potekhin, D.G. Yakovlev, Neutron Stars 1: Equation of State and Structure, Springer Science and Business Media 326 (2007).
[7] M. Camenzind, Compact Objects in Astro-physics, Springer-Verlag, Berlin, Heidelberg (2007).
[8] H.R. Moshfegh, M. Ghazanfari Mojarrad, Strange baryonic matter in the Thomas-Fermi theory, The European Physical JournalA 49 (2013) 1.
[9] M. Ghazanfari Mojarrad, R. Arabsaeidi, Hyperon-rich matter in a two-solar-mass neutron star within the Thomas-Fermi approximation, International Journal of Modern Physics. E 25 (2016) 1650102.
[10] B. Friedman, V.R. Pandharipande, Hot and cold, nuclear and neutron matter, Nuclear Physics A 361 (1981) 502.
[11] R.B. Wiringa, V. Ficks, A. Fabrocini, Equation of state for dense nucleon matter, Physical ReviewC 38 (1988) 1010.
[12] A. Akmal, V.R. Pandharipande, D.G. Ravenhall, Equation of state of nucleon matter and neutron star structure, Physical ReviewC 58 (1998)1804.
[13] G.H. Bordbar, Calculation of the saturation properties of symmetrical nuclear matter with inclusion of Δ isobar, Iranian Journal of Physics Research 3 (2001) 1.
]13[غ.بردبار،محاسبة خصوصیات اشباع مادة هستهای متقارن با در نظر گرفتن ایزوبار Δ، مجلةپژوهشفیزیکایران 3 (1380) 1.
[14] M. Baldo, A. Fiasconaro, H.Q. Song, G. Giansiracusa, U. Lombardo, High density symmetric nuclear matter in the Bethe-Brueckner-Goldstone approach, Physical ReviewC 65 (2001) 017303.
[15] W. Zuo, Z.H. Li, A. Li, and U. Lombardo, Effect of three-body interaction on phase transition of hot asymmetric nuclear matter, Nuclear Physics A 745 (2004) 34.
[16] H.R. Moshfegh, M. Modarres, Thermal properties of asymmetrical nuclear matter with the new charge-dependent Reid potential, Nuclear Physics A 792 (2007) 201.
[17] G. Bordbar, B. Khosropour, Calculation of the effect of neutrinos on the protoneutron star structure, Iranian Journal of Physics Research 8 (2008) 129.
]17[غ. بردبار، ب. خسروپور، محاسبة اثر نوترینو در محاسبة ساختار ستارة نوترونی تازه متولد شده، مجلة پژوهش فیزیک ایران 8 (1387) 129.
[18] A. Rios, A. Polls, A. Ramos, H. Müther, Liquid-gas phase transition in nuclear matter from realistic many-body approaches, Physical ReviewC 78 (2008) 044314.
[19] A. Rios, A. Polls, I. Vidana, Hot neutron matter from a self-consistent Green's-functions approach, Physical ReviewC 79 (2009) 025802.
[20] S. Zaryouni, H.R. Moshfegh, A relativistic approach to the equation of state of asymmetric nuclear matter, The European Physical JournalA 45 (2010) 69.
[21] M. Modarres, A. Tafrihi, The LOCV nucleonic matter correlation and distribution functions versus the FHNC/SOC and the Monte Carlo calculations, Nuclear Physics A 941 (2015) 212.
[22] A. Fedoseew, H. Lenske, Thermal properties of asymmetric nuclear matter, Physical ReviewC 91 (2015) 034307.
[23] H.R. Moshfegh, S. Goudarzi, Temperature Dependence of Nuclear Symmetry Free Energy, Acta Physica Polonica B 46 (2015).
[24] S. Zaryouni, Incompressibility of Nuclear Matter, Journal of research on Manybody systems 4 (2015) 21.
]24[س. زریونی، تراکم ناپذیری ماده هستهای، مجله پژوهش سیستمهای بسذرهای 4 (1393) 21.
[25] S. Goudarzi, H.R. Moshfegh, Erratum: Proto-neutron star structure within an extended lowest-order constrained variational method at finite temperature [Physical ReviewC 92, 035806 (2015)], Physical ReviewC 97 (2018) 049904.
[26] S. Goudarzi, H.R. Moshfegh, P. Haensel, The role of three-body forces in nuclear symmetry energy and symmetry free energy, Nuclear Physics A 969 (2018) 206.
[27] W.D. Myers, W.J. Swiatecki, A Thomas-Fermi model of nuclei. Part I. Formulation and first results, Annals of Physics 204 (1990) 401.
[28] W.D. Myers, W.J. Swiatecki, Nuclear properties according to the Thomas-Fermi model, Nuclear Physics A 601 (1996) 141.
[29] D. Serot, J.D. Walecka, The relativistic nuclear many body problem, Adv. Nuclear Physics 16 (1986) 1.
[30] H. Müller, B.D. Serot, Relativistic mean-field theory and the high-density nuclear equation of state, Nuclear Physics A 606 (1996) 508.
[31] H. Müller, B.D. Serot, Phase transitions in warm, asymmetric nuclear matter, Physical ReviewC 52 (1995) 2072.
[32] E. Chabanat, P. Bonche, P. Haensel, J. Mayer, and R. Schaeffer, A Skyrme parametrization from subnuclear to neutron star densities Part II. Nuclei far from stabilities, Nuclear Physics A 635 (1998) 231.
[33] J. Randrup, E. Lima Medeiros, Model for statistical properties of nuclear systems at finite temperature, Nuclear Physics A 526 (1991) 115.
[34] K. Strobel, F. Weber, M.K. Weigel, Symmetrie and Asymmetrie Nuclear Matter in the Thomas-Fermi Model at Finite Temperatures, Z. Naturforschr A 54 (1999) 83.
[35] H.R. Moshfegh, Equation of state of hot nuclear and neutron matter: A statistical approach, International Journal of Modern Physics. E 15 (2006) 1127.
[36] H.R. Moshfegh, M. Ghazanfari Mojarrad, Thermal properties of baryonic matter, Journal of Physics G: Nuclear and Particle Physics 15 (2011) 085102.
[37] M. Ghazanfari Mojarrad,S.K. Mousavi Khoreshtami,A. Mostajeran Gurtani, Thomas-Fermi calculations for determination of critical properties of symmetric nuclear matter on the basis of extended effective mass approach, Iranian Journal of Physics Research 16 (2016) 207.
]37[م .غضنفری مجرد، س .ک. موسوی خرشتمیو ا. مستأجران گورتانی، محاسبات توماس- فرمی برای تعیین خواص بحرانی ماده هستهای متقارن براساس رهیافت جرم مؤثر تعمیمیافته، مجله پژوهش فیزیک ایران 16 (1395) 207.
[38] M. Ghazanfari Mojarrad, S.K. Mousavi Khoroshtomi, Thomas–Fermi approximation for the equation of state of nuclear matter: A semi-classical approach from the Landau Fermi-Liquid theory, International Journal of Modern Physics. E 26 (2017) 1750038.
[39] M. Ghazanfari Mojarrad, N.S. Razavi, S. Vaezzade, Thomas–Fermi approximation for β-stable nuclear matter in the Landau Fermi-liquid theory, Nuclear Physics A 980 (2018) 51.
[40] D.N. Basu, Nuclear incompressibility using the density-dependent M3Y effective interaction, Journal of Physics G: Nuclear and Particle Physics. 30 (2004) B7.
[41] J. Xu, L.W. Chen, B. A. Li, H.R. Ma, Temperature effects on the nuclear symmetry energy and symmetry free energy with an isospin and momentum dependent interaction, Physical ReviewC 75 (2007) 014607.
[42] C.C. Moustakidis, Thermal effects on nuclear symmetry energy with a momentum-dependent effective interaction, Physical ReviewC 76 (2007) 025805.
[43] C.C. Moustakidis, Temperature and momentum dependence of single-particle properties in hot asymmetric nuclear matter, Physical ReviewC 78 (2008) 054323.
[44] J. Xu, L.W. Chen, B.A. Li, H.R. Ma, Effects of isospin and momentum dependent interactions on thermal properties of asymmetric nuclear matter, Physical ReviewC 77 (2008) 014302.
[45] L.W. Chen et al., Higher-order effects on the incompressibility of isospin asymmetric nuclear matter, Physical ReviewC80 (2009) 014322.
[46] J. Piekarewicz, M. Centelles, Incompressibility of neutron-rich matter, Physical ReviewC 79 (2009) 054311.
[47] D.N. Basu, P.R. Chowdhury, C .Samanta, Isobaric incompressibility of isospin asymmetric nuclear matter, Physical ReviewC 80 (2009) 057304.
[48] A. Rios, Effective interaction dependence of the liquid–gas phase transition in symmetric nuclear matter, Nuclear Physics A 845 (2010) 58.
[49] G. Baym, C.J. Pethick, Landau Fermi-Liquid Theory. Concepts and Applications, Wiley, New York, (1991).
[50] R.K. Pathria, Statistical Mechanics, Oxford: Butterworth-Heinemann (1996).
[51] M. Brack, R.K. Bhaduri, Semi-classical Physics,Addison-Wesley, (1997).
[52] C.F. von Weizsacker, On the theory of nuclear masses, Zeitschrift für Physik 96 (1935) 431.
[53] H.A. Bethe, R.F. Bacher, Nuclear physics A. Stationary states of nuclei, Reviews of Modern Physics8 (1936) 82.
[54] H.T. Janka, K. Langanke, A. Marek, G Martínez-Pinedo, B Müller, Theory of core-collapse supernovae, Physics Reports 442 (2007)
[55] L. Roberts, G. Shen, V. Cirigliano, J. Pons, S. Reddy, S. Woosley, Protoneutron star cooling with convection: The effect of the symmetry energy, Physical Review Letters 108 (2012) 061103.
[56] L.W. Chen, C.M. Ko, B.A. Li, Nuclear matter symmetry energy and the neutron skin thickness of heavy nuclei, Physical Review C 72 (2005) 064309
[57] M.M. Sharma and et al., Giant monopole resonance in Sn and Sm nuclei and the compressibility of nuclear matter, Physical ReviewC 38 (1988) 2562.
[58] J.R. Stone, N.J. Stone, S.A. Moszkowski, Incompressibility in finite nuclei and nuclear matter, Physical ReviewC 89 (2014) 044316.
[59] T. Li et al., Isotopic Dependence of the Giant Monopole Resonance in the Even-A Sn 112–124 Isotopes and the Asymmetry Term in Nuclear Incompressibility, Physical Review Letters 99 (2007) 162503.