[1] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V.Grigorieva, A.A. Firsov, Modifying electronic transport properties of graphene by electron beam irradiation, Science 306 666 (2004) 666-669.
[2] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, M.I. Katsnelson, V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in grapheme, Nature 438 (2005) 197-200.
[3] X.-Y. Fang et al., Temperature and thickness-dependent of electrical conductivity of few-layer graphene and graphene nanosheets, Physics Letters A 379 (2015) 224-2251.
[4] G. Ansaripour, B. Shayeghy, Quantum screening of one dimensional electron gas of ZnO and InAs nanowires in dielectric environment, Journal Research of Many Body Particle Systems, 10 (2016) 1-6.
[5] G. Ansaripour, Calculation of surface potential and sub-threshold current in short channel MOSFETs, Journal Research of Many Body Particle Systems, 1, (2011) 1-8.
[6] G. Ansaripour, Z. Bagheri, Investigation of thermal properties of polycrystalline graphene, Al-Zahra University Journal Applied Physics 2 (2015) 23-39.
[7] G. Ansaripour, The effect of hot phonons on the hole drift velocity in a p-type Si/SiGe modulation doped heterostructure, Thin Solid Films 517 21 (2009) 6105-6108.
[8] G. Ansaripour, "Mobility of holes in a Si/SiGe metal oxide semiconductor field effect transistor," Thin Solid Films 518 19 (2010) 5599-5603.
[9] S. Kaya, Y-P Zhao, J.R. Watling, A. Asenov, J.R. Barker, G. Ansaripour, G. Braithwaite, T.E. Whall, E.H.C. Parker, Indication of velocity overshoot in strained SiGe p-channel MOSFETs, Semiconductor Science Technology 5 (2000) 573-578.
[10] G. Ansaripour, G. Braithwaite, M. Myronov, O.A. Mironov, E.H.C. Parker, T.E. Whall, Energy loss rates of two-dimensional hole gases in inverted Si/SiGe heterostructures, Applied Physics Letters 76 ( 2000) 1140-1142.
[11] R. Anicic, Z.L. Miskovic, Effects of the structure of charged impurities and dielectric environment on conductivity of graphene, Physical Review B 88 (2013) 205412.
[12] S. Wu, R. Yang, M. Cheng, W. Yang, G. Xie, P. Chen, D. Shi and G. Zhang, Defect-enhanced coupling between graphene and SiO2 substrate, Applied Physics Letters 105 (2014) 063113-063115.
[13] E. Stolyarova, K.T. Rim, S. Ryu, J. Maultzsch, P. Kim, L.E. Brus, T.F. Heinz, M.S. Hybertsen and G.W. Flynn, Observation of graphene bubbles and effective mass transport under graphene films, Nano Letters 9 (2009) 332-337.
[14] Y. Li, N. Mason, Tunneling spectroscopy of graphene using planar Pb probes, Applied Physics Letters 102 (2013) 023102-023104.
[15] T.S. Li, M.F. Lin,, Electronic properties of bilayer bernal graphene in modulated magnetic field, Journal of Magnetism and Magnetic Materials 348 (2013) 61-67.
[16] M.S. Foster and I.L. Aleiner, Graphene via large N: A renormalization group study, Physical Review B 77 (2008) 195413.
[17] S. Adam, P.W. Brower, Crossover from quantum to Boltzmann transport in graphene, Physical Review B 79 (2009) 201404.
[18] A. Altland, Magnetotransport in disordered graphene: exposed to zone: from weak to strong localization, Physical Review B 81 (2010) 205445.
[19] T. Ando, Screening Effect and Impurity Scattering in Monolayer Graphene, Journal Physics Society of Japan. 75 (2006) 074716.
[20] J. Gonzalez, F. Guinea, V.A.M. Vozmediano, Quantum critical transport in clean graphene, Nuclear Physics B 424 (1994) 595
[21] Y.-W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E.H. Hwang, S. Das Sarma, H.L. Stormer, and P. Kim, Measurement of scattering rate and minimum conductivity in graphene, Physical Review Letters 99 (2007) 246803.
[22] S. Adam, E.H. Hwang, E. Rossi, S. Das Sarma, Theory of charged impurity scattering in two dimensional graphene, Solid State Communication 149 (2009) 1072-1079.
[23] S. Das Sarma, E.H. Hwang, Plasmons in Coupled Bilayer Structures, Physical Review Letters 83 (1999) 164.
[24] T. Fang, A. Konar, H. Xing, D. Jena, Applied Physics Letters 91 (2007) 092109-092111
[25] Q. Li, E.H. Hwang, E. Rossi, S. Das Sarma, Physical Review Letters 107 (2011) 156601.
[26] N. Sule, S.C. Hagness, I. Knezevic, Clustered impurities and carrier
transport in supported graphene, Physical Review B89 (2014) 165402.
[27] S. Adam, E.H. Hwang, V.M. Galitski, S. Das Sarma, A self-consistent theory for graphene transport, Proceedings of the National Academy of Sciences 104 (2007) 18392-18397.
[28] E. Rossi, S. Das Sarma, Ground state of graphene in the presence of
random charged impurities, Physical Review Letters 101 (2008) 166803.