[1] M. Hong, J. Kwo, A.R. Kortan, J.P. Mannaerts, A.M. Sergent, Epitaxial Cubic Gadolinium Oxide as a Dielectric for Gallium Arsenide Passivation, Science 283 (1999) 1897-1900.
[2] G. Adachi, N. Imanaka, The binary rare earth oxides Chemical reviews 984 (1998) 1479-1514.
[3] L. Laversenne, et al. Optimization of spectroscopic properties of Yb 3+-doped refractory sesquioxides: cubic Y2O3, Lu2O3 and monoclinic Gd2O3 Optical materials 164 (2001) 475-483.
[4] J. Zarembowitch, J. Gouteron, Raman spectrum of single crystals of monoclinic B type gadolinium sesquioxide, Journal of Raman Spectroscopy94 (1980) 263-265.
[5] Y. Fujimoto, et al. Evaluation of characterization of rare-earth doped sesquioxideceramic scintillators, Optical Materials 342 (2011) 448-451.
[6] N.H. Menzler, F. Tietz, S. Uhlenbruck, H.P. Buchkremer, D. Stover, Materials and manufacturing technologies for solid oxide fuel cells, Journal of Material Science 45(2010) 3109-3135.
[7] N. Sammes, Y. Du, Intermediate-temperature SOFC Electrolytes, Fuel Cell Technologies: State and Perspectives NATO Science Series202(2005) 19-34.
[8] B. Antic, M. Mitric, D. Rodic, Structure properties and magnetic susceptibility of diluted magnetic semiconductor Y2− xHoxO3, Journal of magnetismandmagneticmaterials 145 3 (1995) 349-356.
[9] N.N. Greenwood, T.C. Gibb, Mossbauer Spectroscopy Chapman & Hall, London, (1971)
[10] E.N. Kaufmann, R.J. Vianden, The electric field gradient in noncubic metals, Reviews of Modern Physics 51 1 (1979) 161-214.
[11] H. Frauenfelder, R.M. Steffen, Alpha, Beta and Gamma-Ray Spectroscopy, North Holland field gradients in noncubic metals, Physical Review Letters 34 20 (1975) 1280-1283.
[12] R.S. Raghavan, E.N. Kaufmann, P. Raghavan, Universal correlation of electronic and ionic field gradients in noncubic metals, Physical Review Letters 34 20 (1975) 1280-1283.
[13] T.P. Das, E.L. Hahn, Nuclear Quadrupole Resonance Spectroscopy, Suppl. 1 to Solid State Physics, Academic Press, New York (1958).
[14] D. Richard et al. Abinitio LSDA and LSDA+ U study of pure and Cd-doped cubic lanthanide sesquioxides, Physical Review B 88 16 (2013) 165206.
[15] L. Eyring, The binary rare earth oxides, Handbook of Physics and Chemistry of Rare Earths, Vol.3North Holland, Amsterdam (1979).
[16] G. Bonnet, M. Lachkar, J.P. Larpin, J.C. Colson, Characterization of thin solid films of rare earth oxides formed by the metallo-organic chemical vapour deposition technique, for high temperature corrosionapplications, Thin Solid Films 261 (1995) 31-36.
[17] W. Heitmann, Reactively Evaporated Films of Scandia and Yttria, Applied optics12 (1973) 394-397.
[18] E. Zych, On the reasons for low luminescence efficiency in combustion-made Lu2O3:Tb, Optical Materials, 16 (2001) 445-452.
[19] P. Hohenberg, W. Kohn, Density Functional Theory (DFT), Physical ReviewB 136 (1964) 864-871
[20] J.P. Perdew, K. Burke, M. Ernzerhof, generalized gradient approximation made simple, Physical Review Letters 77 (1996)3865-3868.
[21] V.I. Anisimov, J. Zaanen, O.K. Andersen, Band theory and Mott insulators: Hubbard U instead of Stoner,Physical Review B 44 (1991) 943-954.
[22] V.I. Anisimov, I.V. Solovyev, M.A. Korotin, M.T. Czyżyk, G.A. Sawatzky, Density functional theory and NiO hotoemission spectra, Physical Review B 48 (1993) 16929-16934.
[23] H. Jamnezhad, M. Jafari, Structure of Gd2O3 nanoparticles at high temperature, Journal of Magnetism and Magnetic Materials 408(2016) 164-167.
[24] H. Jamnezhad, M. Jafari, Structural, electronic, and optical properties of C-type Gd2O3: a density functional theory investigation. Journal of Computational Electronics16 (2017) 272-279.
[25] A.B. Shick, A.I. Liechtenstein, W.E. Pickett, Implementation of the LDA+U method using the full-potential linearized augmented plane-wave basis, Physical Review B 60 (1999) 10763-10769.
[26] B.J. Kennedy, M. Avdeev, The Structure of C-type Gd2O3. A Powder Neutron Diffraction Study using Enriched 160Gd, Australian Journal of Chemistry 64 (2011) 119–121
[27] P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Vienna University of Technology, Vienna, Austria, (2001).
[28] P. Larson, W.R.L. Lambrecht, A. Chantis, M. van Schilfgaarde, Electronic structure of rare-earth nitrides using the LSDA+Uapproach: importance of allowing 4f orbitals to break the cubiccrystal symmetry, Physical Review B 75 (2007) 045114
[29] F.D. Murnaghan, The Compressibility of Media under Extreme Pressures, Proceedings of the National Academy of Sciences, USA30 (1944) 244-247.
[30] M. Weinert, Solution of Poisson's equation: Beyond Ewald-type methods Journal of Mathematical Physics22 (1981) 2433-2439.
[31] J.D. Cashion, D.B. Prowse, A. Vas, Mossbauer effect study of gadolinium compounds using 155Gd, Journal of Physics C: Solid State Physics 616 (1973) 2611-2624.
[32] J.Shitu et al. Electric-field gradients in Sm2O3, Gd2O3, and Ho2O3 measured with perturbed angular correlation spectroscopy, Physical Review B 4613 (1992) 7987-7993.
[33] P. Blaha, K. Schwarz, P.B. Dederichs, First-principles calculation of the electric-field gradient in hcp metals, Physical Review B 37 (1988) 2792-2796.
[34] R. Coehoorn, K.H.J. Bushow, M.W. Dirken, R.C. Thiel, Valence-electron contributions to the electric-field gradient in hcp metals and at Gd nuclei in intermetallic compounds with the ThCr2Si2 structure, Physical Review B 42(1990) 4645-4655.
[35] A.V. Prokofiev, A.I. Shelykh, B.T. Melekh, Periodicity in the band gap variation of Ln2X3 (X=O, S, Se) in the lanthanide series, Journal of alloys and compounds 242(1996) 41-44
[36] R.M. Moon, W.C. Kochlcr, Magnetic properties of Gd2O3, Physical Review B 11(1975) 1609-1622.
[37] E Ghasemikhah, S Jalali Asadabadi, Electronic properties of antiferromagnetic UBi2 metal by exact exchange for correlated electrons method, Iranian Journal of Physics Research 11 4 (1390) 387-396.