تأثیر میدان های الکتریکی ومغناطیسی بر ویژگی های الکترونی نانونوارهای استانینی

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

1 عضو هیئت علمی گروه فیزیک دانشگاه زنجان

2 دانشگاه زنجان

چکیده

استانین، یک نانوساختار دو بعدی از اتم های Sn، دارای ساختار لانه زنبوری می باشد. بر هم کنش اسپین-مدار ذاتی قوی استانین، موجب ایجاد شکاف انرژی تا حدود 0.07 الکترون ولت در ساختار نواری آن می شود. در این پژوهش، ویژگی های الکترونی نانونوارهای استانینی لبه زیگزاگ با مدل تنگ بست و روش تابع گرین در حضور میدان های الکتریکی و مغناطیسی را بررسی می نماییم. در حضور میدان الکتریکی عمودی، در نانونوارهای استانینی زیگزاگ گذار فازهای فلز-نیم فلز و نیم فلز-نیم رسانا مشاهده می نماییم. در حضور میدان الکتریکی عرضی و یا مغناطیسی جداشدگی اسپینی خواهیم داشت. نتایج ما نشان می دهد که با تنظیم بزرگی و جهت میدان الکتریکی و مغناطیسی می توان ویژگی های الکتریکی، اسپینی و نوری سامانه را کنترل نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of electric and magnetic fields on electronic properties of stanene nanoribbons

نویسندگان [English]

  • Farhad Khoeini 1
  • Leila Esmaeili 2
1
2 University of Zanjan
چکیده [English]

Stanene, a two-dimensional nanostructure of Sn atoms, has a honeycomb structure. The strong intrinsic spin-orbit interaction of stanene causes an energy gap 0.07 eV in its band structure. In this research, the electronic properties of the stanene nanoribbons with the zigzag edges are investigated by the tight binding model and the Green’s function method and in the presence of electric and magnetic fields. In the presence of a vertical electric field, we observe metal-semimetal and semimetal-semiconductor phase transitions in the system. In the presence of a transverse electric field and or magnetic field, we will have spin band splitting. Our results show that by tuning the magnitude and direction of the electric and magnetic fields, we can control the electrical, spin and optical properties of the system.

کلیدواژه‌ها [English]

  • Stanene
  • Tight binding model
  • Electronic properties
  • Band structure
[1] A.K. Geim, Graphene: status and prospects, Science 324 (2009) 1530.
[2] M. Khalkhali, A. Rajabpour, F. Khoeini, Thermal transport across grain boundaries in polycrystalline silicene: A multiscale modeling, Scientific Reports 9 (2019) 5684-1.
[3] O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Ultrasensitive photodetectors based on monolayer MoS2, Nature Nanotechnology 8 (2013) 497.
[4] R.S. Edwards, K.S. Coleman, Graphene synthesis: relationship to applications, Nanoscale 5(2013) 38.
[5] A.K. Geim, K.S. Novoselov, The rise of graphene, Nature materials 6(2007) 183.
[6] B. Cai, S. Zhang, Z. Hu, Y. Hu, Y. Zou and H. Zeng, Tinene: a two-dimensional Dirac material with a 72 meV band gap, Physical Chemistry Chemical Physics 17 (2015) 12634.
[7] P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G. Le Lay, Silicene: compelling experimental evidence for graphenelike two-dimensional silicon, Physical Review Letters 108 (2012) 155501.
[8] M.E. Dávila, L. Xian, S. Cahangirov, A. Rubio, G. Le Lay, Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicone, New Journal of Physics 16 (2014) 095002.
[9] Y. Xu, B.Yan, H.J. Zhang, J. Wang, G. Xu, P. Tang, W. Duan, S.C. Zhang, Large-gap quantum spin Hall insulators in tin films, Physical Review Letters 111 (2013) 136804.
 [10] M. Ezawa, Monolayer topological insulators: silicene, germanene, and stanene, Journal of the Physical Society of Japan 84 (2015) 121003.
[11] S. Rachel, M. Ezawa, Giant magnetoresistance and perfect spin filter in silicene, germanene, and stanene, Physical Review B 89(2014) 195303.
[12] F.F. Zhu, W.J. Chen, Y. Xu, C.L. Gao, D.D. Guan, C.H. Liu, D. Qian, S.C. Zhang, J.F. Jia, Epitaxial growth of two-dimensional stanene. Nature materials 14 (2015) 1020.
[13] S. Saxena, R.P. Chaudhary and S. Shukla, Stanene: atomically thick free-standing layer of 2D hexagonal tin, Scientific Reports 6 (2016).
[14] J. Gao, G. Zhang, Y.W. Zhang, Exploring Ag (111) substrate for epitaxially growing monolayer stanene: a first-principles study, Scientific reports 6 (2016).
[15] Y. Xu, P. Tang, S.C. Zhang, Large-gap quantum spin Hall states in decorated stanene grown on a substrate, Physical Review B 92 (2015) 081112.
[16] Y. Ohtsubo, P. Le Fevre, F. Bertran, A. Taleb-Ibrahimi, Dirac cone with helical spin polarization in ultrathin α-Sn (001) films, Physical Review Letters 111 (2013) 216401.
[17] A. Barfuss, L. Dudy, M.R. Scholz, H. Roth, P. Höpfner, C. Blumenstein, G. Landolt, J.H. Dil, N.C. Plumb, M. Radovic, A. Bostwick, E. Rotenberg, A. Fleszar, G. Bihlmayer, D. Wortmann, G. Li, W. Hanke, R. Claessen, J. Schӓfer, Elemental topological insulator with tunable Fermi level: Strained α-Sn on InSb (001), Physical Review Letters 111 (2013) 157205.
[18] Y. Ma, Y. Dai, M. Guo, C. Niu, B. Huang, Intriguing behavior of halogenated two-dimensional tin, The Journal of Physical Chemistry C 116 (2012) 12977.
[19] Y. Xu, Z. Gan, S.C. Zhang, Enhanced thermoelectric performance and anomalous Seebeck effects in topological insulators, Physical Review Letters 112(2014) 226801.
[20] S. Cahangirov, M. Topsakal, E. Aktürk, H. Şahin and S. Ciraci, Two-and one-dimensional honeycomb structures of silicon and germanium, Physical Review Letters 102(2009) 236804.
[21] B. van den Broek, M. Houssa, E. Scalise, G. Pourtois, V.V. Afanas‘ev and A. Stesmans, Two-dimensional hexagonal tin: ab initio geometry, stability, electronic structure and functionalization, 2D Materials 1(2014) 021004.
[22] F. Matusalem, M. Marques, L. K. Teles and F. Bechstedt, Stability and electronic structure of two-dimensional allotropes of group-IV materials, Physical Review B 92 (2015) 045436.
[23] N.D. Drummond, V. Zolyomi, V.I. Fal'Ko, Electrically tunable band gap in silicone, Physical Review B 85 (2012) 075423.
[24] M. Ezawa, A topological insulator and helical zero mode in silicene under an inhomogeneous electric field, New Journal of Physics 14 (2012) 033003.
[25] M. Fadaie, N. Shahtahmassebi, M.R. Roknabad, Effect of external electric field on the electronic structure and optical properties of stanene, Opt Quant Electron 48 (2016) 440.
[26] A. Hattori, S. Tanaya, K. Yada, M. Araidai, M. Sato, Y. Hatsugai, K. Shiraishi, Y. Tanaka, Edge states of hydrogen terminated monolayer materials: silicene, germanene and stanene ribbons, Journal of Physics: Condensed Matter 7 (2017) 115302.
[27] M. Mahdavifar, F. Khoeini, Highly tunable charge and spin transport in silicene junctions: phase transitions and half-metallic states, Nanotechnology 29 (2018) 325203.
[28] F. Khoeini, Kh. Shakouri, F.M. Peeters, Peculiar half-metallic state in zigzag nanoribbons of MoS2: Spin filtering, Physical Review B 94(2016) 125412.
 [29] S.C. Chen, C.L. Wu, J.Y. Wu, M.F. Lin, Magnetic quantization of sp3 bonding in monolayer gray tin, Physical Review B 94 (2016) 045410.
[30] F.L. Shyu, Magneto-electronic and optical properties of zigzag silicene nanoribbons, Physica E: Low-dimensional Systems and Nanostructures 87 (2017) 178.
[31] K. Wakabayashi, M. Fujita, H. Ajiki, M. Sigrist, Electronic and magnetic properties of nanographite ribbons, Physical Review B 59 (1999) 8271.
[32] Y.C. Huang, M.F. Lin, C.P. Chang, Landau levels and magneto-optical properties of graphene ribbons, Journal of Applied Physics 103 (2008) 0737.