[1] A.K. Geim, Graphene: status and prospects, Science 324 (2009) 1530.
[2] M. Khalkhali, A. Rajabpour, F. Khoeini, Thermal transport across grain boundaries in polycrystalline silicene: A multiscale modeling, Scientific Reports 9 (2019) 5684-1.
[3] O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Ultrasensitive photodetectors based on monolayer MoS2, Nature Nanotechnology 8 (2013) 497.
[4] R.S. Edwards, K.S. Coleman, Graphene synthesis: relationship to applications, Nanoscale 5(2013) 38.
[5] A.K. Geim, K.S. Novoselov, The rise of graphene, Nature materials 6(2007) 183.
[6] B. Cai, S. Zhang, Z. Hu, Y. Hu, Y. Zou and H. Zeng, Tinene: a two-dimensional Dirac material with a 72 meV band gap, Physical Chemistry Chemical Physics 17 (2015) 12634.
[7] P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G. Le Lay, Silicene: compelling experimental evidence for graphenelike two-dimensional silicon, Physical Review Letters 108 (2012) 155501.
[8] M.E. Dávila, L. Xian, S. Cahangirov, A. Rubio, G. Le Lay, Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicone, New Journal of Physics 16 (2014) 095002.
[9] Y. Xu, B.Yan, H.J. Zhang, J. Wang, G. Xu, P. Tang, W. Duan, S.C. Zhang, Large-gap quantum spin Hall insulators in tin films, Physical Review Letters 111 (2013) 136804.
[10] M. Ezawa, Monolayer topological insulators: silicene, germanene, and stanene, Journal of the Physical Society of Japan 84 (2015) 121003.
[11] S. Rachel, M. Ezawa, Giant magnetoresistance and perfect spin filter in silicene, germanene, and stanene, Physical Review B 89(2014) 195303.
[12] F.F. Zhu, W.J. Chen, Y. Xu, C.L. Gao, D.D. Guan, C.H. Liu, D. Qian, S.C. Zhang, J.F. Jia, Epitaxial growth of two-dimensional stanene. Nature materials 14 (2015) 1020.
[13] S. Saxena, R.P. Chaudhary and S. Shukla, Stanene: atomically thick free-standing layer of 2D hexagonal tin, Scientific Reports 6 (2016).
[14] J. Gao, G. Zhang, Y.W. Zhang, Exploring Ag (111) substrate for epitaxially growing monolayer stanene: a first-principles study, Scientific reports 6 (2016).
[15] Y. Xu, P. Tang, S.C. Zhang, Large-gap quantum spin Hall states in decorated stanene grown on a substrate, Physical Review B 92 (2015) 081112.
[16] Y. Ohtsubo, P. Le Fevre, F. Bertran, A. Taleb-Ibrahimi, Dirac cone with helical spin polarization in ultrathin α-Sn (001) films, Physical Review Letters 111 (2013) 216401.
[17] A. Barfuss, L. Dudy, M.R. Scholz, H. Roth, P. Höpfner, C. Blumenstein, G. Landolt, J.H. Dil, N.C. Plumb, M. Radovic, A. Bostwick, E. Rotenberg, A. Fleszar, G. Bihlmayer, D. Wortmann, G. Li, W. Hanke, R. Claessen, J. Schӓfer, Elemental topological insulator with tunable Fermi level: Strained α-Sn on InSb (001), Physical Review Letters 111 (2013) 157205.
[18] Y. Ma, Y. Dai, M. Guo, C. Niu, B. Huang, Intriguing behavior of halogenated two-dimensional tin, The Journal of Physical Chemistry C 116 (2012) 12977.
[19] Y. Xu, Z. Gan, S.C. Zhang, Enhanced thermoelectric performance and anomalous Seebeck effects in topological insulators, Physical Review Letters 112(2014) 226801.
[20] S. Cahangirov, M. Topsakal, E. Aktürk, H. Şahin and S. Ciraci, Two-and one-dimensional honeycomb structures of silicon and germanium, Physical Review Letters 102(2009) 236804.
[21] B. van den Broek, M. Houssa, E. Scalise, G. Pourtois, V.V. Afanas‘ev and A. Stesmans, Two-dimensional hexagonal tin: ab initio geometry, stability, electronic structure and functionalization, 2D Materials 1(2014) 021004.
[22] F. Matusalem, M. Marques, L. K. Teles and F. Bechstedt, Stability and electronic structure of two-dimensional allotropes of group-IV materials, Physical Review B 92 (2015) 045436.
[23] N.D. Drummond, V. Zolyomi, V.I. Fal'Ko, Electrically tunable band gap in silicone, Physical Review B 85 (2012) 075423.
[24] M. Ezawa, A topological insulator and helical zero mode in silicene under an inhomogeneous electric field, New Journal of Physics 14 (2012) 033003.
[25] M. Fadaie, N. Shahtahmassebi, M.R. Roknabad, Effect of external electric field on the electronic structure and optical properties of stanene, Opt Quant Electron 48 (2016) 440.
[26] A. Hattori, S. Tanaya, K. Yada, M. Araidai, M. Sato, Y. Hatsugai, K. Shiraishi, Y. Tanaka, Edge states of hydrogen terminated monolayer materials: silicene, germanene and stanene ribbons, Journal of Physics: Condensed Matter 7 (2017) 115302.
[27] M. Mahdavifar, F. Khoeini, Highly tunable charge and spin transport in silicene junctions: phase transitions and half-metallic states, Nanotechnology 29 (2018) 325203.
[28] F. Khoeini, Kh. Shakouri, F.M. Peeters, Peculiar half-metallic state in zigzag nanoribbons of MoS2: Spin filtering, Physical Review B 94(2016) 125412.
[29] S.C. Chen, C.L. Wu, J.Y. Wu, M.F. Lin, Magnetic quantization of sp3 bonding in monolayer gray tin, Physical Review B 94 (2016) 045410.
[30] F.L. Shyu, Magneto-electronic and optical properties of zigzag silicene nanoribbons, Physica E: Low-dimensional Systems and Nanostructures 87 (2017) 178.
[31] K. Wakabayashi, M. Fujita, H. Ajiki, M. Sigrist, Electronic and magnetic properties of nanographite ribbons, Physical Review B 59 (1999) 8271.
[32] Y.C. Huang, M.F. Lin, C.P. Chang, Landau levels and magneto-optical properties of graphene ribbons, Journal of Applied Physics 103 (2008) 0737.