[1] I. Zutic, J. Fabian, S. Das Sarma, Spintronics: Fundamentals and applications, Reviews of modern physics, 76(2004),323.
[2] H. Dery, P. Dalal, L. Cywinski, L.J. Sham, Spin-based logic in semiconductors for reconfigurable large-scale circuits, Nature 447 (2007) 573.
[3] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, IV. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (2004) 666-669.
[5] K.S.A. Novoselov, A.K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, nature 438 (2005) 197-200.
[7] W. Jang,
Z. Chen,
W. Bao, C.N. Lau, C. Dames, Thickness -dependent thermal conductivity of encased graphene and ultrathin graphite,
Nano letters 10 (2010) 3909-3913.
[8] N. Tombros, C. Jozsa, M., Popinciuc, H.T. Jonkman, B.J. van Wees, Electronic spin transport and spin precession in single graphene layers at room temperature, Nature 448 (2007) 571.
[9] T.Y. Yang, J. Balakrishnan, F. Volmer, A. Avsar, M. Jaiswal, J. Samm, S.R. Ali, A. Pachoud, M. Zeng, M. Popinciuc, G. Güntherodt, B. Beschoten, B. Özyilmaz, Observation of long spin-relaxation times in bilayer graphene at room temperature, Physical review letters 107 (2011) 047206.
[10] D.D. Awschalom,
M.E. Flatté, Challenges for semiconductor spintronics,
Nature Physics 3, (2007) 153-159.
[11]
N. Tombros, C. Jozsa, M. Popinciuc, H.T. Jonkman, Electronic spin transport and spin precession in single graphene layers at room temperature,
Nature, 448 (2007) 571-574.
[12] E.I. Rashba, Properties of semiconductors with an extremum loop. 1. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop, Soviet Physics - Solid State 2 (1960) 1224-1238.
[13]
Z.Y. Li, Z.Q. Yang, S. Qiao,
J. Hu, R.Q. Wu, Spin–orbit splitting in graphene on metallic substrates,
Journal of Physics:
Condensed Matter 23 (2011) 225502.
[14] H. Hiura, Tailoring graphite layers by scanning tunneling microscopy, Applied surface science 222 (2004) 374-381.
[15] S. Schnez, F. Molitor, C. Stampfer, J. Güttinger, I. Shorubalko, T. Ihn, K. Ensslin, Observation of excited states in a graphene quantum dot, Applied Physics Letters 94 (2009) 012107.
[16]J. Schelter, P. Recher,
B. Trauzettel,The Aharonov–Bohm effect in graphene rings,
Solid State Communications 152 (2012) 1411-1419.
[17] D. Smirnov, H. Schmidt, R.J. Haug, Aharonov-Bohm effect in an electron-hole graphene ring system, Applied Physics Letters 100 (2012) 203114.
[18]
M. Huefner, F. Molitor, A. Jacobsen, A. Pioda, C. Stampfer, K. Ensslin, T. Ihn, Investigation of the Aharonov–Bohm effect in a gated graphene ring,
physica status solidi (b) 246 (2009) 2756-2759.
[19] P. Recher, B. Trauzettel, A. Rycerz, Ya. M. Blanter, C.W.J. Beenakker, A.F. Morpurgo, Aharonov-Bohm effect and broken valley degeneracy in graphene rings, Physical Review B 76 (2007) 235404.
[20] M. Saiz-Bretín, J. Munárriz, A.V. Malyshev, F. Domínguez-Adame, Control of spin-polarised currents in graphene nanorings, Physics letters A 379 (2015) 2102-2105.
[21] D. Faria, R. Carrillo-Bastos, N. Sandler, A. Latgé, Fano resonances in hexagonal zigzag graphene rings under external magnetic flux, Journal of Physics: Condensed Matter 27 (2015) 175301.
[22] M.I. Katsnelson, K.S. Novoselov, A.K. Geim, Chiral tunnelling and the Klein paradox in graphene, Nature physics 2 (2006) 620-625.
[23]
M.P.L. Sancho,
J.M.L. Sancho, J. Rubio, Quick iterative scheme for the calculation of transfer matrices: application to Mo (100),
Journal of Physics F: Metal Physics 14(1984) 1205.
[24] S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge University Press, Cambridge, (1995).