Investigation the energy surfaces of 180-188Hg isotopic chain in the shape phase transitional region of interacting boson model

Document Type : Full length research Paper

Authors

Department of Physics, University of Tabriz, Tabriz 51664, Iran.

Abstract

In this paper, the 180-188Hg isotopic chain is studied in the transitional region between the prolate and oblate shapes. To this aim, we have used a two parametric transitional Hamiltonian in the interacting boson model. With using Catastrophe theory in combination with coherent state formalism, we have determined the energy surfaces in this transitional region. The results of this study for energy levels and quadrupole transition probabilities are in the satisfactory agreement with experimental counterparts. Also the results for the control parameter of transitional Hamiltonian and the variation of energy surfaces propose a first order phase transition in this isotopic chain and suggest 188Hg nucleus as the best candidate for the O(6) dynamical symmetry limit or Z(5) critical point symmetry.

Keywords


 
[1] F. Iachello, Analytic description of critical point nuclei in a spherical-axially deformed shape phase transition, Physical Review Letter. 87 (2001) 052502-052506.
 [2] J.M. Eisenberg, W. Greiner, Nuclear theory, John Wiley, New York (1987).
[3] A. Bohr, B.R. Mottelson, Nuclear structure, vol. II, in, Benjamin, New York (1975).
[4] D. Bonatsos, N. Minkov, D. Petrellis, Bohr Hamiltonian with a deformation-dependent mass term: physical meaning of the free parameter, Journal of Physics G 42 (2015) 095104-095115.
[5] D. Bonatsos, D. Lenis, D. Petrellis, P. Terziev, Z (5): critical point symmetry for the prolate to oblate nuclear shape phase transition, Physics Letter B 588 (2004) 172-179.
[6] R. Fossion, D. Bonatsos, G. Lalazissis, E (5), X (5), and prolate to oblate shape phase transitions in relativistic Hartree-Bogoliubov theory, Physical Review C 73 (2006) 044310-044315.
 [7] F. Iachello, Dynamic symmetries at the critical point, Physical Review Letter 85 (2000) 3580-3584.
 [8] P. Cejnar, J. Jolie, Quantum phase transitions studied within the interacting boson model, Physical Review E 61 (2000) 6237-6241.
 [9] R. Casten, D. Kusnezov, N. Zamfir, Phase transitions in finite nuclei and the integer nucleon number problem, Physical Review Letter. 82 (1999) 5000-5003.
[10] F. Iachello, Lie Groups, in: Lie Algebras and Applications, Springer (2015).
[11] Y. Zhang, F. Pan, L.-R. Dai, J. Draayer, Triaxial rotor in the SU (3) limit of the interacting boson model, Physical Review C 90 (2014) 044310-044320.
[12] P. Cejnar, J. Jolie, R.F. Casten, Quantum phase transitions in the shapes of atomic nuclei, Review of Modern Physics 82 (2010) 2155-2189.
[13] P. Cejnar, J. Jolie, Quantum phase transitions in the interacting boson model, Progeress of Particle Physics 62 (2009) 21-256.
 [14] R. Casten, Shape phase transitions and critical-point phenomena in atomic nuclei, Nature Physics 2 (2006) 811-820.
 [15] D. Zhang, B. Ding, Description of the properties of the low-lying energy states in 100Mo with IBM2, Science China Phys, Mechanics and Astronomy 57 (2014) 447-452.
[16]Y. Zhang, J. Xu, S. Li, Y. An, The prolate-oblate shape phase transition in the interacting boson model, in: Euoropean Physical Journal, Web of Conferences 82 (2013) 01014- 01025.
[17] Y. Zhang, F. Pan, Y.-X. Liu, Y.-A. Luo, J. Draayer, Analytically solvable prolate-oblate shape phase transitional description within the SU (3) limit of the interacting boson model, Physical Review C 85 (2012) 064312-064322.
[18] I. Inci, Test of the coherent state approach in the axially deformed region, Nuclear Physics A 924 (2014) 74-82.
[19] Y. Zhang, Z. Zhang, The robust O (6) dynamics in the prolate–oblate shape phase transition, Journal of Physics G 40 (2013) 105107-105118.
[20] K. Nomura, D. Vretenar, T. Nikšić, B.-N. Lu, Microscopic description of octupole shape-phase transitions in light actinide and rare-earth nuclei, Physical Review C 89 (2014) 024312.
[21]E. A. Mccutchan, Nuclear Data Sheets for A = 180, Nuclear Data Sheets 126 (2015) 151-266.
[22] B. Singh, Nuclear Data Sheets for A = 182, Nuclear Data Sheets 130 (2015) 21-85.
[23] C. M. Baglin, Nuclear Data Sheets for A = 184, Nuclear Data Sheets 99 (2003) 1.
[24] C. M. Baglin, Nuclear Data Sheets for A = 186, Nuclear Data Sheets 111 (2010) 275-322.
[25] B. Singh, Nuclear Data Sheets for A = 188, Nuclear Data Sheets 95 (2002) 387-394.
[26] H. Sabri, A theoretical study of energy spectra and transition probabilities of 200–204Hg isotopes in transitional region of IBM,International Journal of Modern Physics E 23 (2014) 1450056-1450068.
[27] H. Sabri, O. Jabbarzade, A. Ghale Asadi, S. K. Mousavi Mobarake, Study of shape coexistence in the 180-190Hg isotopes by SO(6) representation of eigenstates, International Journal of Modern Physics E 26 (2017) 1750056-1750064.

[28] N. Bree et al. Shape Coexistence in the Neutron-Deficient Even-Even 182−188Hg Isotopes Studied via Coulomb Excitation, Physical Review Letter 112 (2014) 162701-162714.

[29] J. E. Garcia-Ramos, K. Heyde, Nuclear shape coexistence: A study of the even-even Hg isotopes using the interacting boson model with configuration mixing, Physical Review C 89 (2014) 014306-014322.

[31] A. Leviatan and D. Shapira, Algebraic benchmark for prolate-oblate coexistence in nuclei, Physical Review C 93 (2016) 051302-051304 (R).
Volume 9, Issue 2
September 2019
Pages 121-133
  • Receive Date: 04 December 2017
  • Revise Date: 19 February 2019
  • Accept Date: 07 July 2019