[1] F. Iachello, Analytic description of critical point nuclei in a spherical-axially deformed shape phase transition, Physical Review Letter. 87 (2001) 052502-052506.
[2] J.M. Eisenberg, W. Greiner, Nuclear theory, John Wiley, New York (1987).
[3] A. Bohr, B.R. Mottelson, Nuclear structure, vol. II, in, Benjamin, New York (1975).
[4] D. Bonatsos, N. Minkov, D. Petrellis, Bohr Hamiltonian with a deformation-dependent mass term: physical meaning of the free parameter, Journal of Physics G 42 (2015) 095104-095115.
[5] D. Bonatsos, D. Lenis, D. Petrellis, P. Terziev, Z (5): critical point symmetry for the prolate to oblate nuclear shape phase transition, Physics Letter B 588 (2004) 172-179.
[6] R. Fossion, D. Bonatsos, G. Lalazissis, E (5), X (5), and prolate to oblate shape phase transitions in relativistic Hartree-Bogoliubov theory, Physical Review C 73 (2006) 044310-044315.
[7] F. Iachello, Dynamic symmetries at the critical point, Physical Review Letter 85 (2000) 3580-3584.
[8] P. Cejnar, J. Jolie, Quantum phase transitions studied within the interacting boson model, Physical Review E 61 (2000) 6237-6241.
[9] R. Casten, D. Kusnezov, N. Zamfir, Phase transitions in finite nuclei and the integer nucleon number problem, Physical Review Letter. 82 (1999) 5000-5003.
[10] F. Iachello, Lie Groups, in: Lie Algebras and Applications, Springer (2015).
[11] Y. Zhang, F. Pan, L.-R. Dai, J. Draayer, Triaxial rotor in the SU (3) limit of the interacting boson model, Physical Review C 90 (2014) 044310-044320.
[12] P. Cejnar, J. Jolie, R.F. Casten, Quantum phase transitions in the shapes of atomic nuclei, Review of Modern Physics 82 (2010) 2155-2189.
[13] P. Cejnar, J. Jolie, Quantum phase transitions in the interacting boson model, Progeress of Particle Physics 62 (2009) 21-256.
[14] R. Casten, Shape phase transitions and critical-point phenomena in atomic nuclei, Nature Physics 2 (2006) 811-820.
[15] D. Zhang, B. Ding, Description of the properties of the low-lying energy states in 100Mo with IBM2, Science China Phys, Mechanics and Astronomy 57 (2014) 447-452.
[16]Y. Zhang, J. Xu, S. Li, Y. An, The prolate-oblate shape phase transition in the interacting boson model, in: Euoropean Physical Journal, Web of Conferences 82 (2013) 01014- 01025.
[17] Y. Zhang, F. Pan, Y.-X. Liu, Y.-A. Luo, J. Draayer, Analytically solvable prolate-oblate shape phase transitional description within the SU (3) limit of the interacting boson model, Physical Review C 85 (2012) 064312-064322.
[18] I. Inci, Test of the coherent state approach in the axially deformed region, Nuclear Physics A 924 (2014) 74-82.
[19] Y. Zhang, Z. Zhang, The robust O (6) dynamics in the prolate–oblate shape phase transition, Journal of Physics G 40 (2013) 105107-105118.
[20] K. Nomura, D. Vretenar, T. Nikšić, B.-N. Lu, Microscopic description of octupole shape-phase transitions in light actinide and rare-earth nuclei, Physical Review C 89 (2014) 024312.
[21]E. A. Mccutchan, Nuclear Data Sheets for A = 180, Nuclear Data Sheets 126 (2015) 151-266.
[22] B. Singh, Nuclear Data Sheets for A = 182, Nuclear Data Sheets 130 (2015) 21-85.
[23] C. M. Baglin, Nuclear Data Sheets for A = 184, Nuclear Data Sheets 99 (2003) 1.
[24] C. M. Baglin, Nuclear Data Sheets for A = 186, Nuclear Data Sheets 111 (2010) 275-322.
[25] B. Singh, Nuclear Data Sheets for A = 188, Nuclear Data Sheets 95 (2002) 387-394.
[26] H. Sabri, A theoretical study of energy spectra and transition probabilities of 200–204Hg isotopes in transitional region of IBM,International Journal of Modern Physics E 23 (2014) 1450056-1450068.
[27] H. Sabri, O. Jabbarzade, A. Ghale Asadi, S. K. Mousavi Mobarake, Study of shape coexistence in the 180-190Hg isotopes by SO(6) representation of eigenstates, International Journal of Modern Physics E 26 (2017) 1750056-1750064.
[28] N. Bree et al. Shape Coexistence in the Neutron-Deficient Even-Even 182−188Hg Isotopes Studied via Coulomb Excitation, Physical Review Letter 112 (2014) 162701-162714.
[29] J. E. Garcia-Ramos, K. Heyde, Nuclear shape coexistence: A study of the even-even Hg isotopes using the interacting boson model with configuration mixing, Physical Review C 89 (2014) 014306-014322.
[31] A. Leviatan and D. Shapira, Algebraic benchmark for prolate-oblate coexistence in nuclei, Physical Review C 93 (2016) 051302-051304 (R).