[1] Ke. Changhong, D. Horacio, Nano-electro-mechanical Systems and Modelling, Handbook of Theoretical and Computational Nanotechnology, American Scientific Publishers (2005).
[2] F. Moradiani, M. Seifouri, K. Abedi, Design and Analysis of Plasmonic Switch at mid-IR Wavelengths with Graphene Nano-Ribbons, Journal of Research on Many-body Systems 8 (2018) 101-105.
[3] J. Sun, M. Muruganathan, N. Kanetake, H. Mizuta, Locally-actuated graphene-based nano-electro-mechanical switch, Micromachines 7 (2016) 1-6.
[4] E.L. Wolf, Applications of graphene: an overview, Springer, (2014).
[5] W. Wang, M. Muruganathan, J. Kulothungan, H. Mizuta, Study of dynamic contacts for graphene nano-electromechanical switches, Japanese Journal of Applied Physics 56 (2017) 1-8.
[6] S.N. Kazmi, M.A. Hafiz, K.N. Chappanda, S. Ilyas, J. Holguin, P.M. Costa, M.I. Younis, Tunable nanoelectromechanical resonator for logic computations, Nanoscale 9 (2017) 3449-3457.
[7] K.E. Kaczor‐Urbanowicz, C. Martín Carreras‐Presas, T. Kaczor, M. Tu, F. Wei, F. Garcia‐Godoy, D.T. Wong, Emerging technologies for salivaomics in cancer detection, Journal of cellular and molecular medicine 21 (2017) 640-647.
[8] O.Y. Loh, H.D. Espinosa, Nanoelectromechanical contact switches, Nature nanotechnology 7 (2012) 283 -295.
[9] M. Nie, Q.-A. Huang, W. Li, Pull-in characterization of doubly-clamped composite beams, Sensors and Actuators A 151 (2009) 118-126.
[10] H. Rong, Q.-A. Huang, M. Nie, W. Li, An analytical model for pull-in voltage of clamped–clamped multilayer beams, Sensors and Actuators A 116 (2004) 15-21.
[11] S. Chowdhury, M. Ahmadi, W.C. Miller, Pull-in voltage study of electrostatically actuated fixed-fixed beams using a VLSI on-chip interconnect capacitance model, Journal of Microelectromechanical systems 15 (2006) 639-651.
[12] I. Peyvasteh, G. Alahyarizadeh, A. Minuchehr, Mechanical and thermodynamic properties of 3C structure of silicon carbide using molecular dynamics and density functional theory methods, Journal of Research on Many-body Systems 8 (2019) 22-38.
[13] J. Tersoff, Modeling solid-state chemistry: Interatomic potentials for multicomponent systems, Physical Review B 39 (1989) 5566-5568.
[14] A. Mayer, A monopole-dipole model to compute the polarization of metallic carbon nanotubes, Applied Physics Letters 86 (2005) 1-2.
[15] Z. Wang, R.W. Scharstein, Electrostatics of graphene: Charge distribution and capacitance, Chemical Physics Letters 489 (2010) 229-236.
[16] Z. Wang, M. Devel, Electrostatic deflections of cantilevered metallic carbon nanotubes via charge-dipole model, Physical Review B 76 (2007) 1-5.
[17] A. Mayer, P. Lambin, R. Langlet, Charge-dipole model to compute the polarization of fullerenes, Applied physics letters 89 (2006) 1-3.
[18] D.J. Evans, B.L. Holian, The nose–hoover thermostat, The Journal of chemical physics 83 (1985) 4069-4074.
[19] L.N. Dworsky, Introduction to numerical electrostatics using MATLAB, John Wiley & Sons, 2014.
[20] Y. Fang, P. Li, A new approach and model for accurate determination of the dynamic pull-in parameters of microbeams actuated by a step voltage, Journal of micromechanics and microengineering 23 (2013) 1-11.
[21] F. Scarpa, S. Adhikari, A.S. Phani, Effective elastic mechanical properties of single layer graphene sheets, Nanotechnology 20 (2009) 1-10.
[22] C.J. Shearer, A.D. Slattery, A.J. Stapleton, J.G. Shapter, C.T. Gibson, Accurate thickness measurement of graphene, Nanotechnology 27 (2016) 1-10.
[23] P. Li, T. Cui, Single-crystalline graphene radio-frequency nanoswitches, Journal of Micromechanics and Microengineering 25 (2015) 1-6.
[24] P. Tassin, T. Koschny, C.M. Soukoulis, Graphene for terahertz applications, Science 341 (2013) 620-621.
[25] M. Hasan, S. Arezoomandan, H. Condori, B. Sensale-Rodriguez, Graphene terahertz devices for communications applications, Nano Communication Networks 10 (2016) 68-78.