[1] K.M. Song, D.C. Khan, A.K. Ray, Correlation study of sodium-atom chemisorption on the GaAs (110) surface, Physical Review B 49 (1994) 1818-1826.
[2] Y.J. Zhang, B.K. Chang, Z. Yang, J. Niu, J.J. Zou, Distribution of carriers in gradient-doping transmission-mode GaAs photocathodes grown by molecular beam epitaxy, Chinese Physics B 18 (2009) 4541-4546.
[3] J.J. Zou, Y.J. Zhang, Z. Yang, B.K. Chang, Degradation model of GaAs vacuum electron sources, Acta Physica. Sinica 60 (2011) 017902-017906.
[4] M.A. Vasilenko, I.G. Neizvestny, N.L. Shwartz, Formation of GaAs nanostructures by droplet epitaxy—Monte Carlo Simulation, Computational Materials Science 102 (2015) 286-292.
[5] T. Shan, X. Qi, Design and optimization of GaAs photovoltaic converter for laser power Beaming, Infrared Physics and Technology 71 (2015) 144-150.
[6] W. Wang, G. Lee, M. Huang, R.M. Wallace, K. Cho, First-principles study of GaAs(001)-b2( ) surface oxidation and passivation with H, Cl, S, F and GaO, Journal of Applied Physics 107 (2010) 103720-103730.
[7] C.H. Chung, S.I. Yi, W.H. Weinberg, Temperature-programmed desorption and high-resolution electron energy loss spectroscopy studies of the interaction of water with the GaAs (001)- ( ) surface, Journal of Vacuum Science and Technology A 16 (1998) 1785-1789.
[8] X. Zhang, S. Ptasinska, Dissociative adsorption of water on an H2O/GaAs (100) interface: in situ near-ambient pressure XPS studies, Journal of Physical Chemistry C 118(2014) 4259-4266.
[9] J-S. Zhang, H-C Liu, F. Shi, F. Yu, Y. Liu, C. Xiao, Q. Lan, Adsorption and dissociation of H2O on the Ga-rich GaAs(0 0 1)-(4 2) surface: DFT and DFT-D computations with a Ga7As8H11cluster mode, Computational and Theoretical Chemistry 1064 (2015) 51-55.
[10] H.L. Lu, W. Chen, S.J. Ding, D.W. Zhang, L.K. Wang, DFT calculations of NH3 adsorption and dissociation on gallium-rich GaAs (001)- ( ) surface, Chemical Physics Letters 445 (2007) 188-192.
[11] Q. Fu, L. Li, C.H. Li, M.J. Begarney, D.C. Law, R.F. Hicks, Mechanism of arsine adsorption on the Gallium-rich GaAs (001)- ( ) surface, Journal of Physical Chemistry B 104(2000) 5595-5602.
[12] M.V. Lebedev, Methylthiol adsorption on GaAs (100)- ( ) surface: ab initio quantum-chemical analysis, Semiconductors 42 (2008) 1048-1054.
[13] M. Saavedra, A. Buljan, M. Muñoz, Theoretical study of methanethiol adsorbed on GaAs(100) surface, Journal of Molecular Structure, THEOCHEM 906 (2009) 72-77.
[14] H.L. Lu, W. Chen, S.J. Ding, M. Xu, D.W. Zhang, L.K. Wang, Quantum chemical study of adsorption and dissociation of H2S on the Gallium-rich GaAs (001)-( ) surface, Journal of Physical Chemistry B 110 (2006) 9529-9533.
[15] M.V. Lebedev, Mechanism of H2S molecule adsorption on the GaAs (100) surface: ab initio quantum-chemical analysis, Physics of the Solid State 48(2006) 164-171.
[16] D.S. sholl, Using density functional theory to study hydrogen diffusion in metals: A brief overview,Journal of Alloys Compounds 446 (2007) 462-468.
[17] M.V. Lebedev, Quantum-chemical study of adsorption of 2-propanol molecule on a GaAs (100) surface, Semiconductors 45 (2011) 1519-1523.
[18] S. Tang, Z. Cao, Density functional characterization of adsorption and decomposition of 1- propanethiol on the Ga-rich GaAs (001) surface, Journal of Physical Chemistry A 113 (2009) 5685-5690.
[19] H. Ye, L. Tang, Q. Ni, Identification of the dissociative and kick-out diffusion mechanisms of Zn diffusion in GaAs by photoluminescence analysis, Material Science and Engineering:B 197(2015) 1-4 .
[20] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters 77 (1996) 3865-3868.
[21] E. Engel, S.H. Vosko, Fourth-order gradient corrections to the exchange-only energy functional: importance of contributions, Physical Review B 50 (1994) 10498-10505.
[22] P. Blaha, K. Schwarz, J. Luitz, WIEN97, A full potential linearized augmented plane wave package for calculating crystal properties, Karlheinz Schwarz, Techn. Universitat Wien, Austria, 1999, ISBN 3-9501031r-r0-4.
[23] P. Dufek, P. Blaha, K. Schwarz, Applications of Engel and Vosko’s generalized gradient approximation in solids, Physical Review B 50 (1994) 7279-7283.
[24] Z. Nourbakhsh, Structural, electronic and optical properties of ZnX and CdX compounds (X = Se, Te and S) under hydrostatic pressure, Journal of Alloys Compounds 505 (2010) 698-711.
[25] Z. Nourbakhsh, First principles study of the structural, electronic and optical properties of ZnSxSe1-xalloys, Physica B 405 (2010) 4173–4187.
[26] N.V. Smith, Photoelectron Energy Spectra and the Band Structures of the Noble Metals, Physical Review B 3 (1971) 1862-1878.
[27] C. Ambrosch-Draxl, J.A. Majewski, P. Vogl, G. Leising, First-principles studies of the structural and optical properties of crystalline poly(para-phenylene), Physical Review B 51(1995) 9668-9679.