[1] W.L. Barnes, Surface plasmon–polariton length scales: a route to sub-wavelength optics, Journal of Optics A: Pure and Applied Optics 8 (2006) 87-93.
[2] W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics, Nature424 (2003) 824-830.
[3] S.I. Bozhevolnyi, J. Erland, K. Leosson, P.M. Skovgaard, J.M. Hvam, Waveguiding in surface plasmon polariton band gap structures, Physical review letters 86 (2001) 3008-3011.
[4] T. Søndergaard, V. Siahpoush, J. Jung, Coupling light into and out from the surface plasmon polaritons of a nanometer-thin metal film with a metal nanostrip, Physical Review B 86 (2012) 085455.
[5] M. Tahmasebpour, M. Bahrami, A. Asgari, Investigation of subwavelength grating structure for enhanced surface plasmon resonance detection, Applied optics53 (2014) 6307-6316.
[6] F. Rana, Graphene terahertz plasmon oscillators, Nanotechnology, IEEE Transactions on7 (2008) 91-99.
[7] M. Jablan, M. Soljacic, H. Buljan, Plasmons in graphene: Fundamental properties and potential applications, Proceedings of the IEEE 101 (2013) 1689-1704.
[8] I.-T. Lin, Y.-P. Lai, K.-H. Wu, J.-M. Liu, Terahertz Optoelectronic Property of Graphene: Substrate-Induced Effects on Plasmonic Characteristics, Applied Sciences 4 (2014) 28-41.
[9] V. Mohadesi, V. Siahpoush, A. Asgari, Investigation of leaky and bound modes of graphene surface plasmons, Journal of Applied Physics 122 (2017) 133113-6.
[10] س. بهزاد، ر. چگل، بررسی خواص الکتریکی و اپتیکی گرافن با زیر لایه BC3 پژوهش سیستمهای بسذرهای 8 16 (1397) 27-21.
[10] S.Behzad, R. Chegel, Investigation of the electro-optical properties of graphene with BC3 substrate, Journal of Research on Many-body Systems 8 (2018) 21-27.
[11] س. س. توسلمند، م. هاشمی، طراحی فرامواد گرافینی با قابلیت تنظیم خواص اپتیکی، پژوهش سیستمهای بسذرهای 6 ویژه نامه شمارة1 (1395) 134-127.
[11] S.S.
Tavasolmand,
M. Hashemi, Designing Graphene-based Metamaterials with Tunable Optical Properties, Journal of Research on Many-body Systems
6 (2016) 127-134.
[12] ف. مرادیانی، م. صیفوری و ک. عابدی، تحلیل و طراحی سوئیچ پلاسمونیک با استفاده از نانونوارهای گرافنی در طول موج های مادون قرمز میانی،
پژوهش سیستمهای بسذرهای 8 16 (1397) 105-101.
[12] F. Moradiani, M. Seifouri, K. Abedi, Design and Analysis of Plasmonic Switch at mid-IR Wavelengths with Graphene Nano-Ribbons, Journal of Research on Many-body Systems 8 16 (2018) 101-105.
[13] J. Zhang, L. Zhang, W. Xu, Surface plasmon polaritons: physics and applications, Journal of Physics D: Applied Physics 45 (2012) 113001-19.
[14] L. Jiang, J. Guo, Q. Wang, X. Dai, Y. Xiang, Perfect Terahertz Absorption with Graphene Surface Plasmons in the Modified Otto Configuration, Plasmonics (2016) 1-7.
[15] F. Ramos-Mendieta, J. Hernández-López, M. Palomino-Ovando, Transverse magnetic surface plasmons and complete absorption supported by doped graphene in Otto configuration, AIP Advances 4 (2014) 067125-13.
[16] C. Sorger, S. Preu, J. Schmidt, S. Winnerl, Y.V. Bludov, N.M. Peres, et al., Terahertz response of patterned epitaxial graphene, New Journal of Physics 17 (2015) 053045.
[17] W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, et al., Excitation and active control of propagating surface plasmon polaritons in graphene, Nano letters 13 (2013) 3698-3702.
[18] Y.V. Bludov, M. Vasilevskiy, N. Peres, "Mechanism for graphene-based optoelectronic switches by tuning surface plasmon-polaritons in monolayer graphene, Europhysics Letters 92 (2010) 68001.
[19] Y.V. Bludov, M.I. Vasilevskiy, N.M. Peres, Tunable graphene-based polarizer, Journal of Applied Physics 112 (2012) 084320.
[20] S.A. Maier, Plasmonics: fundamentals and applications, Springer Science & Business Media (2007).
[21] V. Mohadesi, A. Asgari, V. Siahpoush, Radiation characteristics of Leaky Surface Plasmon polaritons of graphene, Superlattices and Microstructures119 (2018) 40-45.
[22] G.W. Hanson, Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene, Journal of Applied Physics 103 (2008) 064302.