مطالعه خواص الکترونیکی و نوری پروسکایت هالید آلی متیل آمونیوم و فورمامیدینیوم سرب یدید ، برومید و کلرید

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

1 گروه فوتونیک و فناوری پلاسما، دانشکده فیزیک ، دانشگاه تبریز، تبریز، ایران

2 پژوهشکده فیزیک کاربردی و ستاره شناسی، دانشگاه تبریز، تبریز، ایران

3 گروه فیزیک، دانشکده علوم، دانشگاه صنعتی سهند، سهند، ایران

چکیده

در این مقاله خواص الکترونیکی و نوری پروسکایتهای آلی، در فاز مکعبی ، برای ساختارهای متیل آمونیوم و فورمامیدینیوم سرب یدید ، برومید و کلرید براساس نظریه تابعی چگال و با استفاده از نرم افزار quantum espresso و با انرزی جنبشی قطع 408 الکترون ولت و شبه پتانسیل هایی با تابع PBE و تقریب GGA مورد استفاده قرار گرفته است. در این راستا، ثابت شبکه ، ساختار الکترونیکی ، طیف جذبی ، رسانندگی اپتیکی ، ضریب شکست ، ضریب بازتاب ، طیف انرژی از دست رفته الکترونی ، ثابت دی الکتریک استاتیکی، تابع دی الکتریک با فرکانس بی نهایت و چگالی الکترونی ،برای مواد ذکر شده با در نظر گرفتن تزویج اسپین مدار محاسبه شده اند. همچنین با بررسی چگالی حالات جزئی(PDOS) مشاهده کردیم که ویژگی های الکترونی همه نمونه ها وابسته به اوربیتال های 6P اتم سرب و به ترتیب 3P ,4P,5P ید و بروم و کلر است. محاسبات انجام گرفته برای تابع دی الکتریک نیز نشان داد که ثابت استاتیک و فرکانس بی نهایت دی الکتریک با تغییر هالید ها از ید به بروم و کلر کاهش می یابد. تمامی داده های بدست امده در توافق بسیار خوبی با داده های تجربی منتشر شده اخیر هستند.

کلیدواژه‌ها


عنوان مقاله [English]

First-Principles Study of the Structural , Optical and Electronic Properties of the Lead-Halide-Based Organic Perovskites MAPbX3 , FAPbX3 , (X= I ,Br , Cl)

نویسندگان [English]

  • ali mehdizadeh 1
  • saeid shojaei 1 2
  • Mohammad Hossein Hekmatshoar 3
1 Photonics& Plasma Technology Department, University of Tabriz, Iran
2
3 Physics Department, Sahand University of Technology, Sahand , Iran
چکیده [English]

The electronic properties of MAPbX3(MA= CH3NH3+) units employing the experimental cell parameters (6.33,5.95 and5.66 Å for X = I,Br and Cl, respectively),FAPbX3(FA=( CH-(NH2)2+) units employing the experimental cell parameters (6.36 , 5.99 and5.60 Å for X = I ,Br and Cl, respectively) perovskite in the cubic phase are systematically studied using the first-principles calculations. We correlate our experimental results with first-principles theory and provide an insight into important parameters like; lattice constants, electronic structure , static and high-frequency dielectric constants, Reflection coefficient, Absorption coefficient , Optical conductivity , Refractive index,in these perovskite .Our calculations are performed using the Quantum-Espresso pakage in the framework of density functional theory (DFT). The projector augmented-wave (PAW) pseudopotentials are used within energy cutoff of 408 Ev for the plane-wave basis functions.For the exchange-correlationfunctional, the generalized gradient approximation(GGA) of Perdew-Burke-Ernzerhof(PBE) is used to relax the structural parameters. We substituted I- to Br- to Cl- in order to tune the bandgap from 1.6 eV to 2.4 ev to 3.2 eV of these materials. Electronic structure calculations reveal that electronic properties are mainly governed by Pb 6p and halide p orbitals. spin-orbit coupling (SOC) is included in all the calculations. All calculations reported in agreement with experimental data.

کلیدواژه‌ها [English]

  • Halide organic perovskite(HOP)
  • Dielectric function
  • Absorption
  • DOS
  • Band structure
  • Sollar cell
  • LED
[1] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, Journal of the American Chemical Society 131 (2009) 6050–6051.
[2] M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient ,Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites, Science 338 2(2012) 643-647.
[3] D. Samuel, H. Stranks, J. Snaith, Metal-halide perovskites for photovoltaic and
light-emitting devices, Nature Nano Technology 10 (2015) 391-402.
[4] H.S. Kim, C.R. Lee, J.H. Lee, K.B. Moehl, T. Marchioro, A. Moon, S.J. Humphry Baker, R. Yum, J.H. Moser, J. Eetal, Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%, Scientific Reports 2 (2012) 591-598.
[5] N.K. Kumawat, M.N. Tripathi, U.V. Waghmare, D. Kabra, Structural, Optical and Electronic Properties of Wide Bandgap Perovskites: Experimental & Theoretical Investigation, Journal of Physical Chemistry A 120 (2016) 3917-3923.
[6] N.K. Kumawat, A. Dey, Narasimhan, K.L. Kabra, Near Infrared to Visible Electroluminescent Diodes Based on Organometallic Halide Perovskites: Structural and Optical Investigation, ACS Photonics 2 (2015) 349-354.
[7] R. Comin. G. Walters, E.S.Thibau, O. Voznyy, Z.H. Lub, E.H. Sargent, Structural, Optical, and Electronic Studies of Wide-Bandgap Lead Halide Perovskites, Journal of Materials Chemistry C 3 (2015) 8839-8843.
[8] A.D. Egger, A.M. Rappe, L. Kronik, Hybrid Organic−Inorganic Perovskites on the Move, Accounts of Chemical Research 49 (2016) 573-581.
[9] J. Even, L. Pedesseau, C. Katan, M. Kepenekian, J.Lauret, D. Sapori, E. Deleporte, Solid State Physics Perspective on Hybrid Perovskite Semiconductors, Journal of Physical Chemistry C 119, (2015) 10161-10177.
 [10] S.D. Stranks, V.M. Burlakov, T. Leijtens, J.M. Ball, A. Goriely, H.J. Snaith, Recombination Kinetics in Organic-Inorganic Perovskites: Excitons, Free Charge, and Subgap States, Physical Review A 2 (2014) 034007.
[11,12] A. Benassi, A. Ferretti, C. Cavazzoni Quantum- espresso eps-manManual, (2009).
[13] A.Walter Harrison, Solid State Theory, McGraw Hill (1970).
[14] M.Richard Martin, Electronic structure: Basic theory and practical methods, Cambridge University Press, New York (2004).
 [15] C.F. Klingshirn, Semiconductor Optics, Springer (1997).
[16] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, L.C. Guido, M. Cococcioni, I. Dabo, QUANTUM ESPRESSO, a modular and open-source software project for quantum simulations of materials, Journal of Physics: Condensed Matter 21 (2009) 395502.
[17] D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Physical Review B 41 (1990) 7892-7895.
[18] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review letter 77 (1996) 3865-3868.
[19] D. Zhao, Y. Yu, C. Wang, W. Liao, N. Shrestha, R.C. Grice, A.J. Cimaroli, L. Guan, R.J. Ellingson, K. Zhu, X. Zhao, R.G. Xiong, Y. Yan, Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells, Nature Energy 2 (2017)17018.
[20] X. Gong, Z. Yang Grant,W. Riccardo, C. Zhijun, N. Eric Beauregar Valerio, A. Oleksandr, V. Edward ,H. Sargent, Highly efficient quantum dot near-infrared light-emitting diodes, nature photonic 10 (2016) 253–257.
[21] Z. Wang, D.P, McMeekin, N. Sakai, S.V. Reenen, K. Wojciechowski, J.B. Patel, M.B. Johnston, H.J. Snaith , Efficient and Air-Stable Mixed-Cation Lead Mixed-Halide Perovskite Solar Cells with n-Doped Organic Electron Extraction Layers, Advanced Materials 29 (2017) 1604186.