Study of the Influence of Structural Defects on Mechanical and Electrical Properties of β_12 Borophene

Document Type : Full length research Paper

Authors

1 epartment of Physics, Computational nanolab, University of Guilan, Iran

2 Department of Physics, Computational Nanolab, University of Guilan, Iran.

3 Department of Physics, Computational Nanophysics Laboratory (CNL), University of Guilan, Po Box:41335-1914, Rasht, Iran

Abstract

Borophene is a monolayer of boron atoms with a lot allotropes. Electrical and mechanical properties of β_12 borophene is investigated using density functional theory. β_12 Borophene has an orthorhombic lattice with five boron atoms in a unit cell. We calculate critical strain and ultimate stress of the sheet. The calculated critical strain is 0.18% in x direction with ultimate stress of 18.87 N/m, while, critical strain is 10% and 12% for uniaxial strain along y and biaxial strain, respectively. Young module of the sheet is 180 N/m in x direction and 203 N/m along y one. Structural defects reduce the mechanical ability of the sheet and the reduction is strongly dependent on the position of the removed atoms and their density.

Keywords


 
 [1] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (2004) 666-669.
[2] K. Geim, Graphene: status and prospects, Science 324 (2009) 1530-1534.
[3] A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao,C.N. Lau, Superior thermal conductivity of single-layer graphene, Nano Letter 8 (2008) 902-907.
[4]C. Lee, X. Wei, J.W. Kysar,J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321 (2008) 385-388.
[5] P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G.L. Lay, Silicene: compelling experimental evidence for graphene-like two-dimensional silicon, Physical Review Letter 108(2012) 155501-5.
[6] M.E. Dávila, L. Xian, S. Cahangirov, A. Rubio, G. Le Lay, Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene, New Journal of Physics 16 (2014) 95002-85011.
[7] F. Zhu, W-J. Chen, Y. Xu, C-L.Gao, D-D. Guan, C-H. Liu, D. Qian, S-C. Zhang, J-F. Jia, Epitaxial growth of two-dimensional stanine, Nater Material 14(2015) 1020-1025.
[8] A.J. Mannix, X-F Zhou, B. Kiraly, J.D. Wood, D. Alducin, B.D. Myers, X. Liu, B.L. Fisher, U. Santiago, J.R. Guest, M.J. Yacaman, A. Ponce, A.R. Oganov, M.C. Hersam, N.P. Guisinger, Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs, Science 350 (2015) 1513-1516.
[9] B. Feng, J. Zhang, Q. Zhong, W. Li, S. Li, H. Li, P. Cheng, S. Meng, L. Chen, K. Wu, Experimental realization of two-dimensional boron sheets, Nature Chemistry 8 (2016) 563-568.
[10] M.Q. Le, B. Mortazavi, T. Rabczuk, Mechanical properties of borophene films: a reactive molecular dynamics investigation, Nanotechnology 27 (2016) 445709-4457023.
[11] S. Izadi Vishkayi, M. Bagheri Tagani, Current-Voltage Characteristics of Borophene and Borophane Sheets, Physical Chemistry Chemical Physics 19 (2017) 21461-21466.
[12] X. Zhang, J. Hu, Y. Cheng, H.Y. Yang, Y. Yao, S.A. Yang, Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries, Nanoscale 8 (2016) 15340-15347.
[13] Y. Zhao, S. Zeng, J. Ni, Superconductivity in two-dimensional boron allotropes, Physical Review B 93 (2016) 014502-5.
[14] S. Izadi Vishkaiy, M. Bagheri Tagani, Edge-Dependent Electronic and Magnetic Characteristics of Freestanding β12-Borophene Nanoribbons, Nano-micro Letter 10 (2018) 14-27.
[15] S. Izadi Vishkaiy,M. Bagheri Tagani, Freestanding -borophene nanoribbons: a density functional theory investigation, Physical Chemical Chemistry Physics 20 (2018) 10493-10501.
[16] E. Artacho, D. Sanchez-Portal, P. Ordejon, A. Garcia, J.M. Soler, Density‐functional method for very large systems with LCAO basis sets, International Journal of Quantum Chemistry 65 (1997) 453-461.
[17] P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Physical Review Letter 77 (1996) 3865-3868. 
[18] B. Fen, O. Sugino, R-Y. Liu, J. Zhang, R. Yukawa, M. Kawamura, T. Iimori, H. Kim, Y. Hasegawa, H. Li, L. Chen. K. Wu, H. Kumigashira, F. Komori, T-C. Chiang, S. Meng, I. Matsuda, Dirac Fermions in Borophene, Physical Review Letter 118 (2017) 096401-6.
[19] J. Yuan, N. Yu, B.K. Xue, X. Miaoa, Ideal strength and elastic instability in single-layer 8-Pmmn borophene, RSC Advances, 7 (2017) 8654-8660. 
[20] H.F. Wang, Q.F. Li, Y. Gao, F. Miao, X.F. Zhou, X.G. Wan, Strain effects on borophene: ideal strength, negative Possion's ratio and phonon instability, New Journal of Physics 18 (2016) 073016-073022.
[21] B. Peng, H. Zhang, H.Z. Shao, Z.Y. Ning, Y.F. Xu, H.L. Lu, D.W. Zhang, H.Y. Zhu, Stability and strength of atomically thin borophene from first principles calculations, Material Research Letter 5 (2017) 399-407.