[1]
H. Zhang, J. Banfield, Structural characteristics and mechanical and thermodynamic properties of anocrystalline TiO2, Chemical Reviews 114 (2014) 9613-9644.
|
[2]
|
L. Wang, T. Sasaki, Titanium oxide nanosheets: graphene analogues with versatile functionalities, Chemical Reviews 114 (2014) 9455-9486.
|
[3]
|
H.A. Eivari, S.A. Ghasemi, H. Tahmasbi, S. Rostami, S. Faraji, R. Rasoulkhani, et al., A two-dimensional hexagonal sheet of TiO2, Chemistry of Materials 29 (2017) 8594-8603.
|
[4]
|
A. Atrei, A.M. Ferrari, D. Szieberth, B. Cortigia, Lepidocrocite-like structure of the TiO2monolayer grown on Ag (100),Physical Chemistry Chemical Physics 12 (2010) 11587-11595.
|
[5]
|
A.V. Bandura, R.A. Evarestov, S.I. Lukyanov, Structure Reconstruction of TiO2-Based Multi-Wall Nanotubes: First-Principles Calculations, Physical Chemistry Chemical Physics 16 (2014) 14781-14791.
|
[6]
|
A.M. Ferrari, D. Szieberth, C.M. Zicovich-Wilson, D. Demichelis, Anatase (001) 3 ML nanotubes, the first TiO2 nanotube with negative strain energies: A DFT prediction, Journal of Physical Chemistry Letters 1 (2010) 2854-2857.
|
[7]
|
M. Niu, D. Cheng, D. Cao, Fluorite TiO2 (111) surface phase for enhanced visible-light solar energy conversion, Journal of Physical Chemistry C 118 (2014) 20107-20111.
|
[8]
|
A. Vittadini, F. Sedona, S. Agnoli, L. Artiglia, M. Casarin, G.A. Rizzi, et al. , Stability of TiO2 polymorphs: exploring the extreme frontier of the nanoscale, ChemPhysChem 11 (2010) 1550-1557.
|
[9]
|
T. Zhu, S.P. Gao, The stability, electronic structure, and optical property of TiO2 polymorphs, Journal of Physical Chemistry C 118 (2014) 11385-11396.
|
[10]
|
R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 293 (2001) 269-271.
|
[11]
|
S. Livraghi, M.C. Paganini, E. Giamello, A. Selloni, C.D. Valentin, G. Pacchioni, Origin of photoactivity of nitrogen-doped titanium dioxide under visible light, Journal of the American Chemical Society 128 (2006) 15666-15671.
|
[12]
|
R.M.N. Yerga, M.C.Á. Galván, F.D. Valle, J.A.V. Mano, J.L. Fierro, Water Splitting on Semiconductor Catalysts under Visible‐Light Irradiation, ChemSusChem 2 (2009) 471-485.
|
[13]
|
M.A. Henderson, A surface science perspective on photocatalysis, Surface Science Reports 66 (2011) 185-297.
|
[14]
|
R. Rasoulkhani, H. Tahmasbi, S.A. Ghasemi, S. Faraji, S. Rostami, M. Amsler, Energy landscape of ZnO clusters and low-density polymorphs, Physical Review B 96 (2017) 064108-064121.
|
[15]
|
M. Mattesini, J.S. Almeida, L. Dubrovinsky, N. Dubrovinskaia, B.R. Johansson, R. Ahuja, High-pressure and high-temperature synthesis of the cubic TiO2 polymorph, Physical Review B 70 (2004) 212101-212104.
|
[16]
|
J.P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Physical Review B 45 (1992) 13244-13249.
|
[17]
|
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Physical Review Letters 77 (1996) 3865-3868.
|
[18]
|
R.W. Godby, M. Schlter, L.J. Sham, Self-energy operators and exchange-correlation potentials in semiconductors, Physical Review B 37 (1988) 10159-10175.
|
[19]
|
R.O. Jones, O. Gunnarsson, The density functional formalism, its applications and prospects, Reviews of Modern Physics 61 (1989) 689-746.
|
[20]
|
J. Paier, R. Hirschl, M. Marsman, G. Kresse, The Perdew-Burke-Ernzerhof exchange-correlation functional applied to the G2-1 test set using a plane-wave basis set, Journal of Chemical Physics 122 (2005) 234102-23414.
|
[21]
|
J. Heyd, G.E. Scuseria, M. Ernzerhof, Erratum: Hybrid functionals based on a screened Coulomb potential, Journal of Chemical Physics 124 (2006) 219906-219906.
|
[22]
|
H. Liu, W. Cui, Y. Ma, Hybrid functional study rationalizes the simple cubic phase of calcium at high pressures, Journal of Chemical Physics 137 (2012) 184502-184506.
|
[23]
|
H. Salehi, H.A. Badehian, M. Farbod, First principle study of the physical properties of semiconducting binary antimonide compounds under hydrostatic pressures, Materials Science in Semiconductor Processing 26 (2014) 477–490.
|
[24]
|
Z. Javdani, H.A. Badehian, H. Salehi, P. Amiri, First principles calculations of optical and magnetic properties of SrFe2O4 compound under pressure, Physics Letters A 378 (2014) 2644–2650.
|
[25]
|
Y. Li, W.G. Schmidt, S. Sanna, Intrinsic LiNbO3 point defects from hybrid density functional calculations, Physical Review B 89 (2014) 094111-094118.
|
[26]
|
V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, Ab initio molecular simulations with numeric atom-centered orbitals, Computer Physics Communications 180 (2009) 2175-2196.
|
[27]
|
D. Forrer, A. Vittadini, 2D vs. 3D titanium dioxide: Role of dispersion interactions, Chemical Physics Letters 516 (2011) 72-75.
|
[28]
|
F. Birch, Finite Elastic Strain of Cubic Crystals, Physical Review 71 (1947) 809-824.
|
[29]
|
T. Arlt, M. Bermejo, M.A. Blanco, L. Gerward, J.Z. Jiang, J.S. Olsen, J.M. Recio, High-pressure polymorphs of anatase TiO2., Physical Review B 61 (2000) 14414-14419.
|
[30]
|
M. Iuga, G. Steinle-Neumann, J. Meinhardt, Ab-initio simulation of elastic constants for some ceramic materials., The European Physical Journal B 58 (2007) 127-133.
|
[31]
|
T. Mahmood, C. Cao, R. Ahmed, M. Ahmed, M.A. Saed, A.A. Zafar, T. Husain, A.M. Kamran, Pressure Induced Structural and Electronic Bandgap properties of Anatase and Rutile TiO2, Sains Malaysiana 42 (2013) 231–237.
|
[32]
|
Y. Al-Khatabeh, K.K.M. Lee, B. Kiefer, High-pressure behavior of TiO2 as determined by experiment and theory., Physical Review B 79 (2009) 134114-134122.
|
[33]
|
V. Swamy, B.C. Muddle, Ultrastiff Cubic TiO2 Identified via First-Principles Calculations, Physical Review Letters 98 (2007) 035502-035505.
|
[34]
|
J.K. Burdett, T. Hughbanks, G.J. Miller, J. W. Richardson, J.V. Smith, Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K, Journal of the American Chemical Society 109 (1987) 3639-3646.
|
[35]
|
Y. Tezuka, S. Shin, T. Ishii, T. Ejima, S. Suzuki, S. Sato, Photoemission and bremsstrahlung isochromat spectroscopy studies of TiO2 (rutile) and SrTiO3, Journal of the Physical Society of Japan. 63 (1994) 347-357.
|
[36]
|
J. Zhang, P. Zhou, J. Liu, J. Yu, New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2, Physical Chemistry Chemical Physics 16 (2014) 20382-20386.
|
[37]
|
H. Sato, K. Ono, T. Sasaki, A. Yamagishi, First-principles study of two-dimensional titanium dioxides, The Journal of Physical Chemistry B 107 (2003) 9824-9828.
|
[38]
|
J. Muscat, V. Swamy, N.M. Harrison, First-principles calculations of the phase stability of TiO2, Physical Review B 65 (2002) 224112-224126.
|
[39]
|
T. Orzali, M. Casarin, G. Granozzi, M. Sambi, A. Vittadin, Bottom-Up Assembly of Single-Domain Titania Nanosheets on (1× 2) Pt (110), Physical Review Letters 97 (2006) 156101-156105.
|
[40]
|
M. Landmann, E. Rauls, W.G. Schmidt, The electronic structure and optical response of rutile, anatase and brookite TiO2, Journal of Physics: Condensed Matter 24 (2012) 195503-195509.
|
[41]
|
P. Deak, B. Aradi, T. Frauenheim, Polaronic effects in TiO2 calculated by the HSE06 hybrid functional: Dopant passivation by carrier self-trapping, Physical Review B 83 (2011) 155207-155213.
|
[42]
|
J. Tao, T. Luttrell, M. Batzill, A two-dimensional phase of TiO2 with a reduced bandgap, Nature chemistry 3 (2011) 296-300.
|