Investigation of plasmonic properties of graphene nanoribbon waveguide on hBN and substrate in the MID-IR spectrum range

Document Type : Full length research Paper

Authors

1 1Physics Department, Faculty of Science, Shahid Chamran university of Ahvaz, Iran

2 Physics Department, Faculty of Science, Shahid Chamran university of Ahvaz, Iran

3 Physics Department, Faculty of Science, Shahid Chamran university of Ahvaz, َAhvaz, Iran

Abstract

In this study, waveguide properties of graphene nanoribbon on hBN and a substrate were investigated. Precisely, the plasmonic mode properties including real part of refractive index, propagation length, and figure-of-merit (FoM) on frequency, Fermi energy of graphene, and substrate in the mid-IR spectrum range were inspected. The simulated results show that graphene waveguide is intensively sensitive to the frequency, Fermi energy and structural geometry in the mid-IR range. Also, the propagation length for a Fermi energy of 0.3 (0.9) eV in the frequency range of 1375 cm-1 to 1600 cm-1 reachs from 0.1 (0.4) to 0.38 (4.15) µm, where shows a 3 (10) fold enhancement.

Keywords


[1] W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics, Nature 424(2003) 824-830.
[2] M.L Brongersma, P.G. Kik, Surface plasmon nanophotonics, Springer, New York, (2007).
[3] M.S. Jang, Plasmonics and electron optics in graphene, Doctoral dissertation, California Institute of Technology, (2013).
[4] S.A. Maier, Plasmonics: fundamentals and applications, Springer, Science & Business Media, (2007).
[5] W. Cai, V. Shalaev, Optical Metamaterials: Fundamentals and Applications, Springer, New York, (2010).
 
[6] X. Luo, T. Qiu, W. Lu and Z. Ni, Plasmons in graphene: recent progress and applications, Materials Science and Engineering 74 (2013) 351-376.
[7] P.A.D. GonçalvesN.M.R. Peres, An introduction to graphene plasmonics, Published by World Scientific Publishing Co. Pte. Ltd,(2016).
[8] X. He, P. Gao, W. Shi, A further comparison of graphene and thin metal layers for plasmonics, Nanoscale 8(2016)10388-10397.
[9] A. Grigorenko, M. Polini, K. Novoselov, Graphene plasmonics, Nature Photonics 6 (2012) 749-758.
[10] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (2004) 666-669.
[11] M.I. Katsnelson, K.S. Novoselov, Graphene: New bridge between condensed matter physics and quantum electrodynamics, Solid State Communications 143 (2007) 3-13.
[12] J. Christensen, A. Manjavacas, S. Thongrattanasiri, F.H. Koppens, F.J. García de Abajo, Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons, ACS Nano 6 (2011) 431-440.
[13] M. Jablan, M. Soljačić, H. Buljan, Plasmons in graphene: fundamental properties and potential applications, Proceedings of the IEEE 101(2013) 1689-1704.
[14] T. Low, P. Avouris, Graphene plasmonics for terahertz to mid-infrared applications, ACS Nano 8 (2014) 1086-1101.
[15] G. Abajo, F. Javier, Graphene plasmonics: challenges and opportunities, ACS Photonics 1 (2014) 135-152.
[16] B. Sensale-Rodriguez, R. Yan, M.M. Kelly, T. Fang, K. Tahy, W.S. Hwang, D. Jena, L. Liu, H.G. Xing, Broadband graphene terahertz modulators enabled by intraband transitions, Nature Communications 3(2012) 780-787.
 
[17] M. Dragoman, A.A. Muller, D. Dragoman, F. Coccetti, R. Plana, Terahertz antenna based on graphene, Journal of Applied Physics 107 (2010) 104313.
 
[18] M. Dragoman, D. Neculoiu, A. C. Bunea, G. Deligeorgis, M. Aldrigo, D. Vasilache, A. Dinescu, G. Konstantinidis, D. Mencarelli, L. Pierantoni, M. Modreanu, A tunable microwave slot antenna based on graphene, Applied Physics Letters 106 (2015) 153101.
 
[19] Y. Francescato, V. Giannini, S.A. Maier, Strongly confined gap plasmon modes in graphene sandwiches and graphene-on-silicon, New Journal of Physics 15 (2013) 063020.
[20] J. Chen, M. Badioli, P.González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, Optical nano-imaging of gate-tunable graphene plasmons, Nature 487 (2012) 77-81.
[21] H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, F. Xia, Damping pathways of mid-infrared plasmons in graphene nanostructures,Nature Photonics 7 (2013) 394-399.
[22] J.H. Strait, P. Nene, W.M. Chan, C. Manolatou, S. Tiwari, F. Rana, J.W. Kevek, P.L. McEuen, Confined plasmons in graphene microstructures: Experiments and theory, Physical Review B 87 (2013) 241410.
[23] Y. Gao, G. Ren, B. Zhu, H. Liu, Y. Lian, S. Jian, Analytical model for plasmon modes in graphene-coated nanowire, Optics Express 22 (2014) 24322-24331.
[24] H. Yan, F. Xia, Z. Li, P. Avouris, Plasmonics of coupled graphene micro-structures, New Journal of Physics 14 (2012) 125001.
[25] Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F.J. García de Abajo, P. Nordlander, X. Zhu, N.J. Halas, Active tunable absorption enhancement with graphene nanodisk arrays, Nano Letters 14 (2013) 299-304.
[26] S. He, X. Zhang, Y. He, Graphene nano-ribbon waveguides of record-small mode area and ultra-high effective refractive indices for future VLSI, Optics Express 21 (2013) 30664-30673.
[27] M. Hajati, Y. Hajati, Investigation of plasmonic properties of graphene multilayer nano-ribbon waveguides, Applied Optics 55 (2016)1878-1884.
[28] M. Hajati, Y. Hajati, Dynamic tuning of mid-infrared plasmons in graphene–buffer–SiO2–Si nanostructures, Journal of the Optical Society of America B 33 (2016) 1303-1310.
[29] M. Hajati, Y. Hajati, High-performance and low-loss plasmon waveguiding in graphene-coated nanowire with substrate, Journal of the Optical Society of America B 33 (2016) 2560-2565.
[30] C. Liu, X. He, Z. Zhao, F. Lin, W. Shi, Tunable graphene near-IR dielectric loaded waveguides, Journal of Physics D: Applied Physics49 (2016) 265102.
[31] X. Zhou, T. Zhang, L. Chen, W. Hong, X. Li, A graphene-based hybrid plasmonic waveguide with ultra-deep subwavelength confinement, Journal of Lightwave Technology 32 (2014) 3597-3601.
[32] C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Sorgenfrei, Wang, S.K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, J. Hone, Boron nitride substrates for high-quality graphene electronics, Nature Nanotechnology 5 (2010) 722-726.
[33] S. Dai, Q. Ma, M.K. Liu, T. Andersen, Z. Fei, M.D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial, Nature Nanotechnology 10 (2015) 682-686.
[34] A. Woessner, M.B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, Highly confined low-loss plasmons in graphene-boron nitride heterostructures, Nature Materials 14(2015) 421-425.
[35] B. Zhao, Z.M. Zhang, Enhanced photon tunneling by surface plasmon-phonon polaritons in Graphene/hBN heterostructures, Journal of Heat Transfer 139 (2017) 2701.
[36] Y. hajati, Z. Zanbouri, M. Sabaeian, Low-loss and high-performance mid-infrared plasmon-phonon in graphene-hexagonal boron nitride waveguide, Journal of the Optical Society of America B 35 (2018) 446-453.