Theoretical study of the structural, electrical and optical properties of Ben@C20 (n = 1-6) nanoclusters

Document Type : Full length research Paper

Authors

1 Department of Chemistry, Lorestan university, Khorramabad, Iran

2 Department of chemistry faculty of science Lorestan university Khorramabad Iran

Abstract

In this study، the structural، electrical and optical properties of fullerene C20 with different numbers of Be atoms attached on its surface are investigated. The results showed that the stability of nano-clusters increased by adding the number of Be atoms. By increasing the number of Be atoms around C20، the HOMO-LUMO gap was generally decreased، but the highest decrease was observed in Eg in the Be4@C20-trans and Be6@C20 structures equal to 0.69 and 0.49 respectively. Also، properties such as ionization potential (I)، electron affinity (A)، chemical potential (μ)، total hardness (η)، total softness (γ)،electrophilicity (ω) and electronegativity (χ) were calculated as electrical properties. The polarizability (α) and the first hyperpolarizability (β0)، which is related to linear and nonlinear optical properties (NLO)،were calculated. Significant increase of the first hyperpolarizability (β0>1000000) was observed by doping 6 atoms of Be on the C20 surface. The results of this study may be used to design and construct nano-materials with adjustable electrical properties.

Keywords


[1] F. Lin, E.S. Sørensen, C. Kallin, A.J. Berlinsky, Book chapter: C20 the Smallest Fullerene, Handbook of Nanophysics: Clusters and Fullerenes (2014) 29.1-29.11.
 
[2] H. Kawabata, H.Tachikawa, DFT Study on the Interaction of the Smallest Fullerene C20 with Lithium Ions and Atoms, Journal of carbon research C 3 (2017) 15-22.
 
 
[3] D.F. Eaton, Nonlinear Optical Materials, ACS Symposium Series, 455 (1991) 128-156.
[4] D.R. Kanis, M.A. Ratner, T.J. Marks, Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects, Chemical Reviews 94 (1994) 195-242.
 
[5] G. de la Torre, P. Va´zquez, F. Agullo-Lopez, T. Torres, Role of Structural Factors in the Nonlinear Optical Properties of Phthalocyanines and Related Compounds, Chemical Reviews 104 (2004) 3723-3750. DOI:10.1021/cr030206t
 
[6] O. Ostroverkhova, W.E. Moerner, Organic Photorefractives:  Mechanisms, Materials, and Applications, Chemical Reviews 104 (2004) 3267-3314.
 
[7] K.B. Eisenthal, Second Harmonic Spectroscopy of Aqueous Nano- and Microparticle Interfaces, Chemical Reviews 106 (2006) 1462-1477.
 
[8] B.J. Coe, Switchable Nonlinear Optical Metallochromophores with Pyridinium Electron Acceptor Groups, Accounts of Chemical Research 39 (2006) 383-393.
 
[9] K. Okuno, Y. Shigeta, R. Kishi, M. Nakano, Photochromic Switching of Diradical Character: Design of Efficient Nonlinear Optical Switches, The Journal of Physical Chemistry Letters 4 (2013) 2418-2422.
 
[10] S. Muhammad, H.-L. Xu, R.-L. Zhong, Z.-M. Su, A.G. Al-Sehemi, A. Irfan, Quantum chemical design of nonlinear optical materials by sp2-hybridized carbon nanomaterials: issues and opportunities, Journal of Materials Chemistry C 1 (2013) 5439-5449.
DOI:10.1039/C3TC31183J
 
[11] R.-L. Zhong, H.-L. Xu, S. Muhammad, J. Zhang, Z.-M. Su, The stability and nonlinear optical properties: Encapsulation of an excess electron compound LiCNLi within boron nitride nanotubes, Journal of Materials Chemistry 22 (2012) 2196-2202.
 DOI:10.1039/C1JM14358A
 
[12] C. Tu, G. Yu, G. Yang, X. Zhao, W. Chen, S. Li, X. Huang, Constructing (super)alkali–boron-heterofullerene dyads: an effective approach to achieve large first hyperpolarizabilities and high stabilities in M3O–BC59 (M = Li, Na and K) and K@n-BC59 (n = 5 and 6), Physical Chemistry Chemical Physics 16 (2014)1597-1606.
 
[13] Y. Zhou, X. Cheng, D. Du, J. Yang, . Zhao, S. Ma, T. Zhong, Y. Lin, Graphene–silver nanohybrids for ultrasensitive surface enhanced Raman spectroscopy: size dependence of silver nanoparticles, Journal of Materials Chemistry C 2 (2014) 6850-6858.
DOI:10.1039/C4TC00658E
 
[14] K. Hatua, P.K. Nandi, Beryllium-Cyclobutadiene      Multidecker Inverse Sandwiches: Electronic Structure and Second-Hyperpolarizability,  The Journal of Physical Chemistry A 117 (2013) 12581-12589.
 
[15] S. Muhammad, H. Xu, Z. Su, Capturing a Synergistic Effect of a Conical Push and an Inward Pull in Fluoro Derivatives of Li@B10H14 Basket: Toward a Higher Vertical Ionization Potential and Nonlinear Optical Response, The Journal of Physical Chemistry A 115 (2011) 923-931.
DOI: 10.1021/jp110401f.
 
[16] Y-Y. Hu, S-L. Sun, S. Muhammad, H-L. Xu, Z-M. Su, How the Number and Location of Lithium Atoms Affect the First Hyperpolarizability of Graphene, The Journal of Physical Chemistry C 114 (2010) 19792-19798.
DOI: 10.1021/jp105045j
[17] H-Q. Wu, R.-L. Zhong, S.-L. Sun, H.-L. Xu, Z.-M. Su, Alkali Metals-Substituted Adamantanes Lead to Visible Light Absorption: Large First Hyperpolarizability, The Journal of Physical Chemistry C 118 (2014) 6952-6958.
DOI: 10.1021/jp410560j
 
[18] P. Karamanis, C. Pouchan, Fullerene–C60 in Contact with Alkali Metal Clusters: Prototype Nano-Objects of Enhanced First Hyperpolarizabilities, The Journal of Physical Chemistry C 116 (2012) 11808-11819.
DOI: 10.1021/jp3026573
 
[19] R.-L. Zhong, H.-L. Xu, Z.-R. Li, Z.-M. Su, Role of Excess Electrons in Nonlinear Optical Response, The Journal of Physical Chemistry Letters.6 (2015) 612-619.
DOI: 10.1021/jz502588x
 
[20] W. Chen, Z.-R. Li, D. Wu, Y. Li, C.-C. Sun, F.L. Gu, The Structure and the Large Nonlinear Optical Properties of Li@Calix[4]pyrrole, Journal of the American Chemical Society 127 (2005) 10977-10981.
DOI: 10.1021/ja050601w
 
[21] G. Yu, X. Huang, S. Li, W. Chen, Theoretical insights and design of intriguing nonlinear optical species involving the excess electron, International Journal of Quantum Chemistry 115 (2015) 671-679.
DOI: 10.1002/qua.24878
 
[22] S. Muhammad, H. Xu, Y. Liao, Y. Kan, Z. Su, Quantum Mechanical Design and Structure of the Li@B10H14 Basket with a Remarkably Enhanced Electro-Optical Response, Journal of the American Chemical Society 131 (2009) 11833-11840.
DOI: 10.1021/ja9032023
 
[23] G. Yu, X.R. Huang, W. Chen, C.C. Sun, Alkali metal atom-aromatic ring: A novel interaction mode realizes large first hyperpolarizabilities of M@AR (M = Li, Na, and K, AR = pyrrole, indole, thiophene, and benzene), Journal of Computational Chemistry 32 (2011) 2005-2011.
DOI: 10.1002/jcc.21789
[24] L.-J. Wang, S.-L. Sun, R.-L. Zhong, Y. Liu, D.-L. Wang, H-Q. Wu, H.-L. Xu, X.-M. Pan, Z.-M. Su, The encapsulated lithium effect of Li@C60Cl8 remarkably enhances the static first hyperpolarizability, RSC Advances 3 (2013) 13348-13352.
DOI: 10.1039/C3RA40909K
 
[25] E. Shakerzadeh, E. Tahmasebi, H.R. Shamlouei, The influence of alkali metals (Li, Na and K) interaction with Be12O12 and Mg12O12nanoclusters on their structural, electronic and nonlinear optical properties: A theoretical study, Synthetic Metals 204 (2015) 17-24.
DOI: 10.1016/j.synthmet.2015.03.008
 
[26] S. Kamalinahad, M. Solimannejad, E. Shakerzadeh, Nonlinear Optical (NLO) Response of Pristine and Functionalized Dodecadehydrotribenzo[18]annulene, Bulletin of the Chemical Society of Japan 89(2016):692-699
DOI: 10.1246/bcsj.20160006
 
[27] F. Ma, Z.J. Zhou, Y.T. Liu, Li2 Trapped inside Tubiform [n] Boron Nitride Clusters (n=4–8): Structures and First Hyperpolarizability, ChemPhysChem13 (2012) 1307-1312.
DOI: 10.1002/cphc.201100907
 
[28] E. Shakerzadeh, E. Tahmasebi, Z. Biglari, A quantum chemical study on the remarkable nonlinear optical and electronic characteristics of boron nitride nanoclusters by complexation via lithium atom, Journal of Molecular Liquids 221(2016) 443-451.
DOI: 10.1016/j.molliq.2016.05.090
 
[29] Z. Khajehali, H.R. Shamlouei, Structural, electrical and optical properties of Lin@C20 (n = 1–6) nanoclusters, Comptes Rendus Chimie 21 (2018) 541-546.
DOI: 10.1016/j.crci.2018.02.005
 
[30] A.D. Becke, Perspective on Density-functional thermochemistry. III. The role of exact exchange, The Journal of Chemical Physics 98 (1993) 5648-5652.
DOI: 10.1007/s002149900065
 
[31] C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B 37 (1988) 785-789.
DOI: 10.1103/PhysRevB.37.785
 
[32] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09 (Gaussian, Inc., Wallingford CT, 2009).
[33] N.M. O'boyle, A.L. Tenderholt, K.M. Langner, cclib: A library for package-independent computational chemistry algorithms, Journal of Computational Chemistry 29 (2008) 839-845.
DOI: 10.1002/jcc.20823
 
[34] M.J.G. Peach, T. Helgaker, P. Saiek, T.W. Keal, O.B. Lutnas, D.J. Tozer, N.C. Handy, Assessment of a Coulomb-attenuated exchange–correlation energy functional, Physical Chemistry Chemical Physics 8 (2006) 558- 562.
DOI:10.1039/b511865d
 
[35] A.D. Buckingham, Permanent and induced molecular moments and long-range intermolecular forces, Advances in Chemical Physics 12 (1967) 107–142.
[36] J.E. Rice, N.C. Handy, The calculation of frequency-dependent polarizabilities as pseudo-energy derivatives, The Journal of Chemical Physics 94, (1991) 4959-4971
DOI: 10.1063/1.460558
 
[37] X.Y. Cuib, J.F.g Jia, B.S. Yang, P. Yang, H.S. Wub, Ab initio investigation of hydrogenation of endohedral X@(BN)16 complexes (X = Li+, Na+, K+, Mg2+, Ne, O2−, S2−, F, Cl), Journal of Molecular Structure THEOCHEM, 953 (2010) 1-6.
DOI:10.1016/j.theochem.2010.03.016
 
[38] M. Godarzi , R. Ahmadi, R. Ghiasi, Mo. Yousefi, Effect of B12N12 junction on the energetic and chemical features of PATO: A density functional theory investigation, International Journal of Nano Dimension 10 (2019): 62-68