[1] F. Lin, E.S. Sørensen, C. Kallin, A.J. Berlinsky, Book chapter: C20 the Smallest Fullerene, Handbook of Nanophysics: Clusters and Fullerenes (2014) 29.1-29.11.
[2] H. Kawabata, H.Tachikawa, DFT Study on the Interaction of the Smallest Fullerene C20 with Lithium Ions and Atoms, Journal of carbon research C 3 (2017) 15-22.
[3] D.F. Eaton, Nonlinear Optical Materials, ACS Symposium Series, 455 (1991) 128-156.
[4] D.R. Kanis, M.A. Ratner, T.J. Marks, Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects, Chemical Reviews 94 (1994) 195-242.
[5] G. de la Torre, P. Va´zquez, F. Agullo-Lopez, T. Torres, Role of Structural Factors in the Nonlinear Optical Properties of Phthalocyanines and Related Compounds,
Chemical Reviews 104 (2004) 3723-3750. DOI:
10.1021/cr030206t
[6] O. Ostroverkhova, W.E. Moerner, Organic Photorefractives: Mechanisms, Materials, and Applications, Chemical Reviews 104 (2004) 3267-3314.
[7] K.B. Eisenthal, Second Harmonic Spectroscopy of Aqueous Nano- and Microparticle Interfaces, Chemical Reviews 106 (2006) 1462-1477.
[8] B.J. Coe, Switchable Nonlinear Optical Metallochromophores with Pyridinium Electron Acceptor Groups, Accounts of Chemical Research 39 (2006) 383-393.
[9] K. Okuno, Y. Shigeta, R. Kishi, M. Nakano, Photochromic Switching of Diradical Character: Design of Efficient Nonlinear Optical Switches, The Journal of Physical Chemistry Letters 4 (2013) 2418-2422.
[10] S. Muhammad, H.-L. Xu, R.-L. Zhong, Z.-M. Su, A.G. Al-Sehemi, A. Irfan, Quantum chemical design of nonlinear optical materials by sp2-hybridized carbon nanomaterials: issues and opportunities, Journal of Materials Chemistry C 1 (2013) 5439-5449.
DOI:10.1039/C3TC31183J
[11] R.-L. Zhong, H.-L. Xu, S. Muhammad, J. Zhang, Z.-M. Su, The stability and nonlinear optical properties: Encapsulation of an excess electron compound LiCNLi within boron nitride nanotubes, Journal of Materials Chemistry 22 (2012) 2196-2202.
DOI:10.1039/C1JM14358A
[12] C. Tu, G. Yu, G. Yang, X. Zhao, W. Chen, S. Li, X. Huang, Constructing (super)alkali–boron-heterofullerene dyads: an effective approach to achieve large first hyperpolarizabilities and high stabilities in M3O–BC59 (M = Li, Na and K) and K@n-BC59 (n = 5 and 6), Physical Chemistry Chemical Physics 16 (2014)1597-1606.
[13] Y. Zhou, X. Cheng, D. Du, J. Yang, . Zhao, S. Ma, T. Zhong, Y. Lin, Graphene–silver nanohybrids for ultrasensitive surface enhanced Raman spectroscopy: size dependence of silver nanoparticles, Journal of Materials Chemistry C 2 (2014) 6850-6858.
DOI:10.1039/C4TC00658E
[14] K. Hatua, P.K. Nandi, Beryllium-Cyclobutadiene Multidecker Inverse Sandwiches: Electronic Structure and Second-Hyperpolarizability, The Journal of Physical Chemistry A 117 (2013) 12581-12589.
[15] S. Muhammad, H. Xu, Z. Su, Capturing a Synergistic Effect of a Conical Push and an Inward Pull in Fluoro Derivatives of Li@B10H14 Basket: Toward a Higher Vertical Ionization Potential and Nonlinear Optical Response, The Journal of Physical Chemistry A 115 (2011) 923-931.
DOI: 10.1021/jp110401f.
[16] Y-Y. Hu, S-L. Sun, S. Muhammad, H-L. Xu, Z-M. Su, How the Number and Location of Lithium Atoms Affect the First Hyperpolarizability of Graphene, The Journal of Physical Chemistry C 114 (2010) 19792-19798.
DOI: 10.1021/jp105045j
[17] H-Q. Wu, R.-L. Zhong, S.-L. Sun, H.-L. Xu, Z.-M. Su, Alkali Metals-Substituted Adamantanes Lead to Visible Light Absorption: Large First Hyperpolarizability, The Journal of Physical Chemistry C 118 (2014) 6952-6958.
DOI: 10.1021/jp410560j
[18] P. Karamanis, C. Pouchan, Fullerene–C60 in Contact with Alkali Metal Clusters: Prototype Nano-Objects of Enhanced First Hyperpolarizabilities, The Journal of Physical Chemistry C 116 (2012) 11808-11819.
DOI: 10.1021/jp3026573
[19] R.-L. Zhong, H.-L. Xu, Z.-R. Li, Z.-M. Su, Role of Excess Electrons in Nonlinear Optical Response, The Journal of Physical Chemistry Letters.6 (2015) 612-619.
DOI: 10.1021/jz502588x
[20] W. Chen, Z.-R. Li, D. Wu, Y. Li, C.-C. Sun, F.L. Gu, The Structure and the Large Nonlinear Optical Properties of Li@Calix[4]pyrrole, Journal of the American Chemical Society 127 (2005) 10977-10981.
DOI: 10.1021/ja050601w
[21] G. Yu, X. Huang, S. Li, W. Chen, Theoretical insights and design of intriguing nonlinear optical species involving the excess electron, International Journal of Quantum Chemistry 115 (2015) 671-679.
DOI: 10.1002/qua.24878
[22] S. Muhammad, H. Xu, Y. Liao, Y. Kan, Z. Su, Quantum Mechanical Design and Structure of the Li@B10H14 Basket with a Remarkably Enhanced Electro-Optical Response, Journal of the American Chemical Society 131 (2009) 11833-11840.
DOI: 10.1021/ja9032023
[23] G. Yu, X.R. Huang, W. Chen, C.C. Sun, Alkali metal atom-aromatic ring: A novel interaction mode realizes large first hyperpolarizabilities of M@AR (M = Li, Na, and K, AR = pyrrole, indole, thiophene, and benzene), Journal of Computational Chemistry 32 (2011) 2005-2011.
DOI: 10.1002/jcc.21789
[24] L.-J. Wang, S.-L. Sun, R.-L. Zhong, Y. Liu, D.-L. Wang, H-Q. Wu, H.-L. Xu, X.-M. Pan, Z.-M. Su, The encapsulated lithium effect of Li@C60Cl8 remarkably enhances the static first hyperpolarizability, RSC Advances 3 (2013) 13348-13352.
DOI: 10.1039/C3RA40909K
[25] E. Shakerzadeh, E. Tahmasebi, H.R. Shamlouei, The influence of alkali metals (Li, Na and K) interaction with Be12O12 and Mg12O12nanoclusters on their structural, electronic and nonlinear optical properties: A theoretical study, Synthetic Metals 204 (2015) 17-24.
DOI: 10.1016/j.synthmet.2015.03.008
[26] S. Kamalinahad, M. Solimannejad, E. Shakerzadeh, Nonlinear Optical (NLO) Response of Pristine and Functionalized Dodecadehydrotribenzo[18]annulene, Bulletin of the Chemical Society of Japan 89(2016):692-699
DOI: 10.1246/bcsj.20160006
[27] F. Ma, Z.J. Zhou, Y.T. Liu, Li2 Trapped inside Tubiform [n] Boron Nitride Clusters (n=4–8): Structures and First Hyperpolarizability, ChemPhysChem13 (2012) 1307-1312.
DOI: 10.1002/cphc.201100907
[28] E. Shakerzadeh, E. Tahmasebi, Z. Biglari, A quantum chemical study on the remarkable nonlinear optical and electronic characteristics of boron nitride nanoclusters by complexation via lithium atom, Journal of Molecular Liquids 221(2016) 443-451.
DOI: 10.1016/j.molliq.2016.05.090
[29] Z. Khajehali, H.R. Shamlouei, Structural, electrical and optical properties of Lin@C20 (n = 1–6) nanoclusters, Comptes Rendus Chimie 21 (2018) 541-546.
DOI: 10.1016/j.crci.2018.02.005
[30] A.D. Becke, Perspective on Density-functional thermochemistry. III. The role of exact exchange, The Journal of Chemical Physics 98 (1993) 5648-5652.
DOI: 10.1007/s002149900065
[31] C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B 37 (1988) 785-789.
DOI: 10.1103/PhysRevB.37.785
[32] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09 (Gaussian, Inc., Wallingford CT, 2009).
[33] N.M. O'boyle, A.L. Tenderholt, K.M. Langner, cclib: A library for package-independent computational chemistry algorithms, Journal of Computational Chemistry 29 (2008) 839-845.
DOI: 10.1002/jcc.20823
[34] M.J.G. Peach, T. Helgaker, P. Saiek, T.W. Keal, O.B. Lutnas, D.J. Tozer, N.C. Handy, Assessment of a Coulomb-attenuated exchange–correlation energy functional, Physical Chemistry Chemical Physics 8 (2006) 558- 562.
DOI:10.1039/b511865d
[35] A.D. Buckingham, Permanent and induced molecular moments and long-range intermolecular forces, Advances in Chemical Physics 12 (1967) 107–142.
[36] J.E. Rice, N.C. Handy, The calculation of frequency-dependent polarizabilities as pseudo-energy derivatives, The Journal of Chemical Physics 94, (1991) 4959-4971
DOI: 10.1063/1.460558
[37] X.Y. Cuib, J.F.g Jia, B.S. Yang, P. Yang, H.S. Wub, Ab initio investigation of hydrogenation of endohedral X@(BN)16 complexes (X = Li+, Na+, K+, Mg2+, Ne, O2−, S2−, F−, Cl−), Journal of Molecular Structure THEOCHEM, 953 (2010) 1-6.
DOI:10.1016/j.theochem.2010.03.016
[38] M. Godarzi , R. Ahmadi, R. Ghiasi, Mo. Yousefi, Effect of B12N12 junction on the energetic and chemical features of PATO: A density functional theory investigation, International Journal of Nano Dimension 10 (2019): 62-68