[1] A.N. Enyashin., G. Seifert, Electronic Properties of MoS2 Monolayer and Related Structures. Наносистемы Физика Химия Математика 5 (2014), 4.
[2] S. Ghatak, A.N. Pal, A. Ghosh, Nature of Electronic States in Atomically Thin MoS2 Field-Effect Transistors. ACS Nano 5 (2011), 7707–7712.
[3] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-Layer MoS2 Transistors. Nature Nanotechnology 6 (2011), 147–150.
[4] K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically Thin MoS2: A New Direct-Gap Semiconductor. Physics Review Letter 105 (2010), 136805.
[5] K.S. Novoselov, A.K. Geim; S.V. Morozov, D. Jiang, Y. Zhang; S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films. Science 306 (2004), 666–669.
[6] L.S. Byskov, J.K. Nørskov, B.S. Clausen, H. Topsøe, Edge Termination of MoS2 and CoMoS Catalyst Particles. Catalyst Letters 64 (2000), 95–99.
[7] A. Kumar, P.K. Ahluwalia, Electronic Structure of Transition Metal Dichalcogenides Monolayers 1H-MX2 (M = Mo, W; X = S, Se, Te) from Ab-Initio Theory: New Direct Band Gap Semiconductors. The European Physical Journal B 85 (2012), 186.
[8] O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Ultrasensitive Photodetectors Based on Monolayer MoS2. Nature Nanotechnology 8 (2013), 497–501.
[9] H. Li, J. Wu, Z. Yin, H. Zhang, Preparation and Applications of Mechanically Exfoliated Single-Layer and Multilayer MoS2 and WSe2 Nanosheets. Accounts of Chemical Research 47 (2014), 1067–1075.
[10] X. Ren, L. Pang, Y. Zhang, X. Ren, H. Fan, S. (Frank). Liu, One-Step Hydrothermal Synthesis of Monolayer MoS2 Quantum Dots for Highly Efficient Electrocatalytic Hydrogen Evolution. Journal of Materials Chemistry A 3 (2015), 10693–10697.
[11] J.V. Lauritsen, J. Kibsgaard, S. Helveg, H. Topsøe, B.S. Clausen, E. Lægsgaard, F. Besenbacher, Size-Dependent Structure of MoS2 Nanocrystals. Nature Nanotechnology 2 (2007), nnano.2006.171.
[12] S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta, H.R. Gutiérrez, T.F. Heinz, S.S. Hong, J. Huang, A.F. Ismach, et al. Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene. ACS Nano 7 (2013), 2898–2926.
[13] Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials, Science 331 (2011), 568-571
[14] Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides. Nature Nanotechnology 7 (2012), 699–712.
[15] M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh, H. Zhang, The Chemistry of Two-Dimensional Layered Transition Metal Dichalcogenide Nanosheets. Nature Chemistry 5 (2013), 263–275.
[16] K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang, C.-Y. Su, C.-S. Chang, H. Li, Y. Shi, H. Zhang, et al. Growth of Large-Area and Highly Crystalline MoS2 Thin Layers on Insulating Substrates Nano Letters 12 (2012), 1538-1544
[17] H. Schmidt, S. Wang, L. Chu, M. Toh, R. Kumar, W. Zhao, A.H. Castro Neto, J. Martin, S. Adam, B. Özyilmaz, et al. Transport Properties of Monolayer MoS2 Grown by Chemical Vapor Deposition. Nano Letters 14 (2014), 1909–1913.
[18] V. Senthilkumar, L.C. Tam, Y.S. Kim, Y. Sim, M.-J. Seong, J.I. Jang, Direct Vapor Phase Growth Process and Robust Photoluminescence Properties of Large Area MoS2 Layers. Nano Research 7 (2014), 1759–1768.
[19] T.S. Sreeprasad, P. Nguyen, N. Kim, V. Berry, Controlled, Defect-Guided, Metal-Nanoparticle Incorporation onto MoS2 via Chemical and Microwave Routes: Electrical, Thermal, and Structural Properties. Nano Letters 13 (2013) 4434–4441.
[20] X. Ling, Y.-H. Lee, Y. Lin, W. Fang, L. Yu, M.S. Dresselhaus, J. Kong, Role of the Seeding Promoter in MoS2 Growth by Chemical Vapor Deposition. Nano Letters 14 (2014), 464–472.
[21] H. Li, H. Wu, S. Yuan, H. Qian, Synthesis and Characterization of Vertically Standing MoS2 Nanosheets. Scientific Reports 6 (2016), 21171.
[22] S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B.I. Yakobson, J.-C. Idrobo, P.M. Ajayan, J. Lou, Vapour Phase Growth and Grain Boundary Structure of Molybdenum Disulphide Atomic Layers. Nature Materials 12 (2013), 754–759.
[23] S.-L. Shang, G. Lindwall, Y. Wang, J.M. Redwing, T. Anderson, Z.-K. Liu, Lateral Versus Vertical Growth of Two-Dimensional Layered Transition-Metal Dichalcogenides: Thermodynamic Insight into MoS2. Nano Letters 16 (2016), 5742–5750.
[24] A. Pisoni, J. Jacimovic, R. Gaál, B. Náfrádi, H. Berger, Z. Révay, L. Forró, Anisotropic Transport Properties of Tungsten Disulfide. Scripta Materialia 114 (2016), 48–50.
[25] A. Pisoni, J. Jacimovic, O.S. Barišić, A. Walter, B. Náfrádi, P. Bugnon, A. Magrez, H. Berger, Z. Revay, L. Forró, The Role of Transport Agents in MoS2 Single Crystals. The Journal of Physical Chemistry C 119 (2015), 3918–3922.
[26] F.K. Perkins, A.L. Friedman, E. Cobas, P.M. Campbell, G.G. Jernigan, B.T. Jonker, Chemical Vapor Sensing with Monolayer MoS2. Nano Letters 13 (2013), 668–673.
[27] H. Li, M. Huang, G. Cao, Markedly Different Adsorption Behaviors of Gas Molecules on Defective Monolayer MoS2: A First-Principles Study. Physical Chemistry Chemical Physics 18 (2016), 15110–15117.
[28] H.I. Karunadasa, E. Montalvo, Y. Sun, M. Majda, J.R. Long, C.J. Chang, A Molecular MoS2 Edge Site Mimic for Catalytic Hydrogen Generation. Science 335 (2012), 698–702.
[29] N. Singh, G. Jabbour, U. Schwingenschlögl, Optical and Photocatalytic Properties of Two-Dimensional MoS2. The European Physical Journal B 85 (2012), 392.
[30] D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa, V.B. Shenoy, G. Eda, M. Chhowalla, Conducting MoS2 Nanosheets as Catalysts for Hydrogen Evolution Reaction. Nano Letters 13 (2013), 6222–6227.
[31] V.M.L. Whiffen, K.J. Smith, Hydrodeoxygenation of 4-Methylphenol over Unsupported MoP, MoS2, and MoOx Catalysts. Energy Fuels 24 (2010), 4728–4737.
[32] S. Kim, A. Konar, W.-S. Hwang, J.H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, et al. High-Mobility and Low-Power Thin-Film Transistors Based on Multilayer MoS2 Crystals. Nature Communications 3 (2012).
[33] X. Geng, W. Wu, N. Li, W. Sun, J. Armstrong, A. Al‐hilo, M. Brozak, J. Cui, T. Chen, Three-Dimensional Structures of MoS2 Nanosheets with Ultrahigh Hydrogen Evolution Reaction in Water Reduction. Advanced Functional Materials 24 (2014), 6123–6129.
[34] D. Kong, H. Wang, J.J. Cha, M. Pasta, K. J. Koski, J. Yao, Y. Cui, Synthesis of MoS2 and MoSe2 Films with Vertically Aligned Layers. Nano Letters 13 (2013), 1341–1347.
[35] V. Shokhen, Y. Miroshnikov, G. Gershinsky, N. Gotlib, C. Stern, D. Naveh, D. Zitoun, On the Impact of Vertical Alignment of MoS2 for Efficient Lithium Storage. Scientific Report 7 (2017), 3280.
[36] X. Xie, T. Makaryan, M. Zhao, K. Aken, L.V.Y. Gogotsi, G. Wang, MoS2 Nanosheets Vertically Aligned on Carbon Paper: A Freestanding Electrode for Highly Reversible Sodium-Ion Batteries. Advanced Energy Materials 6(2016), 1502161.
[37] S. Inguva1, J.H. Cai, C. Hu1, J. Wu, Y. Lu1, X. Liu, Effect of substrate angle on the growth of MoS2 vertical nanosheets using a one-step chemical vapor deposition, Materials Research Express 5 (2018), 075026.
[38] G. Yang, Y. Gu, P. Yan, J. Wang, J. Xue, X. Zhang, N. Lu, G. Chen, Chemical Vapor Deposition Growth of Vertical MoS2 Nanosheets on p-GaN Nanorods for Photodetector Application. ACS Applied Materials Interfaces 11 (2019), 8453–8460.
[39] T. Kodas, Handbook of Chemical Vapor Deposition (CVD), Principles, Technology, and Applications. By Hugh O. Pierson, Noyes, Park Ridge, NJ, 1992. 436 Pp., Hardback, $ 68, ISBN 0‐8155‐1300‐3. Advanced. Materials. 1993, 5, 401–402.
[40] L. Yang, X. Cui, J. Zhang, K. Wang, M. Shen, S. Zeng, S.A. Dayeh, L. Feng, B. Xiang, Lattice Strain Effects on the Optical Properties of MoS2 Nanosheets. Scientific Report 4 (2014), 5649.
[41] L. Jiang, S. Zhang, S.A. Kulinich, X. Song, J. Zhu, X. Wang, H. Zeng, Optimizing Hybridization of 1T and 2H Phases in MoS2 Monolayers to Improve Capacitances of Supercapacitors, Materials Research Letters 3 (2015), 177–183.
[42] P. Joensen, E.D. Crozier, N. Alberding, R.F. Frindt, A study of single-layer and restacked MoS, by x-ray diffraction and x-ray absorption spectroscopy, Journal of Physics C: Solid State Physics 20 (1987), 4043-4053.
[43] Z. Deng, Y. Hu, D. Ren, S. Lin, H. Jiang, C. Li, Reciprocal Hybridization of MoO2 Nanoparticles and Few-Layer MoS2 for Stable Lithium-Ion Batteries. Chemical Communications 51 (2015), 13838–13841.
[44] B.J. Carey, J.Z. Ou, R.M. Clark, K.J. Berean, A. Zavabeti, A.S.R. Chesman, S.P. Russo, D.W.M. Lau, Z.-Q. Xu, Q. Bao, et al. Wafer-Scale Two-Dimensional Semiconductors from Printed Oxide Skin of Liquid Metals. Nature Communication 8 (2017), 14482
[45] C. Rice, R.J. Young, R. Zan, U. Bangert, D. Wolverson, T. Georgiou, R. Jalil, K.S. Novoselov, Raman-Scattering Measurements and First-Principles Calculations of Strain-Induced Phonon Shifts in Monolayer MoS2. Physical review B 87(2013), 081307.
[46] A. Castellanos-Gomez, R. Roldán, E. Cappelluti, M. Buscema, F. Guinea, H.S.J. van der Zant, G.A. Steele, Local Strain Engineering in Atomically Thin MoS2, Nano Letters 13 (2013), 5361-5366.
[47] C.K. Tan, W.C. Wong, S.M. Ng, H.F. Wong, C.W. Leung, C.L. Mak, Raman studies of MoS2 under strain at different uniaxial directions, Vacuum 153 (2018) 274–276.