The study of thermoelectric effect in the nonlinear response regime: the appearance of negative differential thermoelectric resistance and thermoelectric rectifier in DNA

Document Type : Full length research Paper

Authors

Department of Physics, Faculty of Science, Urmia University of Technology, Urmia, Iran

Abstract

Sources of renewable energy are a major global concern for researchers. In recent years, the thermoelectric power generation from waste heat has appeared as a green and clean energy competitor. Recently, nonlinear thermoelectric phenomena constitute a new area of research, anticipated to enhance thermoelectric response. Organic thermoelectric materials (TM) has been appeared as superior TMs, since they are non-toxic, eco-friendly, and low cost. Herein, bio-organic materials provide a unique opportunity in developing bio-degradable, flexible and smart TM. In this work, we describe nonlinear phonon-thermoelectric DNA based nano devices, driven by temperature biases. Remarkably, we found that by applying a temperature difference between the source and drain, the sensible electric current is generated. The temperature of the hot thermostat and the temperature bias are considered as a control parameter. By modulating the temperature bias, NDTER phenomenon can be achieved. NDTER is referred to a phenomenon in which the charge current decreases by increasing the temperature bias. Moreover, by fixing the temperature bias between cold and hot reservoirs and varying the temperature of hot reservoir, the charge currents are different for the forward and reverse directions of ∆T. This is what called as a thermoelectric rectification.

Keywords

Main Subjects


 
[1] J. Chen, S.A. Darst, D. Thirumalai, Promoter melting triggered by bacterial RNA polymerase occurs in three steps, Proceedings of the National Academy of Sciences U.S.A. 107 (2010) 12523. https://doi.org/10.1073/pnas.1003533107
[2] A. Bruce, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell, ed. Garland Science, New York, (2008). https://www.ncbi.nlm.nih.gov/books/NBK21054/
[3] H.S. Nalwa, Encyclopedia of Nanoscience and Nanotechnology 7, American Scientific Publishers, (2004). http://www.aspbs.com/enn15.html
[4] T. Omabegho, R. Sha, N.C. Seeman, A bipedal DNA Brownian motor with coordinated legs, Science 324 (2009)67.
https://doi.org/10.1126/science.1170336
[5] A.K. Mazur, M. Maaloum, DNA flexibility on short length scales probed by atomic force microscopy, Physical Review Letters 112 (2014) 068104. https://doi.org/10.1103/PhysRevLett.112.068104
[6] G.B. Schuster, Long-range charge transfer in DNA I, Springer Science & Business Media (2004). https://www.springer.com/gp/book/9783540201311
[7] R. Di Felice, A. Calzolari, H. Zhang, H. Towards metalated DNA-based structures Nanotechnology 15 (2004) 1256. https://doi.org/10.1088/0957-4484/15/9/025
[8] H. Xi, L. Luo, G. Fraisse, Development and applications of solar-based thermoelectric technologies, Renewable & Sustainable Energy Reviews 11 (2007)923. https://doi.org/10.1016/j.rser.2005.06.008
[9] A.M. Omer, Focus on low carbon technologies: The positive solution, Renewable & Sustainable Energy Reviews 12 (2008) 2331. https://doi.org/10.1016/j.rser.2007.04.015
[10] O. Afshar, R. Saidur, M. Hasanuzzaman, M. Jameel, A review of thermodynamics and heat transfer in solar refrigeration system, Renewable & Sustainable Energy Reviews 16 (2012) 5639. https://doi.org/10.1016/j.rser.2012.05.016
[11] M. Thirugnanasambandam, S. Iniyan, R. Goic, A review of solar thermal technologies, Renewable & Sustainable Energy Reviews 14 (2010) 312. https://doi.org/10.1016/j.rser.2009.07.014
[12] D.M. Rowe, Thermoelectrics, an environmentally-friendly source of electrical power, Renewable Energy 16 (1999)1251. https://doi.org/10.1016/S0960-1481(98)00512-6
 [13] C. Wood, Reports on Progress in Physics 51 (1988) 459–539. https://doi.org/10.1088/0034-4885/51/4/001
[14] Y. Gelbstein, Z. Dashevsky, M.P. Dariel, High performance n-type PbTe-based materials for thermoelectric applications, Physica B: Condensed. Matter 363 (2005) 196–205. https://doi.org/10.1016/j.physb.2005.03.022
[15] G.J. Snyder, E.S. Toberer, Complex thermoelectric materials, Nature Materials 7(2008) 105-114. https://doi.org/10.1142/9789814317665_0016
[16] M.W. Gaultois, T.D. Sparks, C.K.H. Borg, R. Seshadri, W.D. Bonificio, D.R. Clarke, Data-driven review of thermoelectric materials: performance and resource considerations, Chemistry of Materials 25(2013)2911. https://doi.org/10.1021/cm400893e
[17] S.K. Yee, S. LeBlanc, K.E. Goodson, C. Dames, per W metrics for thermoelectric power generation: beyond ZT, Energy & Environmental Science 6 (2013) 2561. https://doi.org/10.1039/C3EE41504J
[18] S. LeBlanc, S.K. Yee, M.L. Scullin, C. Dames, K.E. Goodson, Material and manufacturing cost considerations for thermoelectrics, Renewable & Sustainable Energy Reviews 32 (2014) 313. https://doi.org/10.1016/j.rser.2013.12.030
[19] S. Behnia, R. Panahinia, Ballistic induced pumping of hypersonic heat current in DNA nano wire, The European Physical Journal B 89.12 (2016) 263. https://doi.org/10.1140/epjb/e2016-70490-x
 [20] D. Vashaee A. Shakouri, Improved thermoelectric power factor in metal-based superlattices, Physical Review Letters 92 (2004) 106103. https://doi.org/10.1103/PhysRevLett.92.106103
[21] M. Zebarjadi, K. Esfarjani, A. Shakouri, Nonlinear Peltier effect in semiconductors, Applied Physics Letters 91 (2007) 122104. https://doi.org/10.1063/1.2785154
[22] J. Meair P. Jacquod, Scattering theory of nonlinear thermoelectricity in quantum coherent conductors, Journal of Physics: Condensed Matter 25 (2013) 082201. https://doi.org/10.1088/0953-8984/25/8/082201
[23] M. Leijnse, M.R. Wegewijs, K. Flensberg, Nonlinear thermoelectric properties of molecular junctions with vibrational coupling, Physical Review B 82 (2010) 045412. https://doi.org/10.1103/PhysRevB.82.045412
[24] T. Dauxois, M. Peyrard, A.R. Bishop, Dynamics and thermodynamics of a nonlinear model for DNA denaturation, Physical Review E 47(1993) R44. https://doi.org/10.1103/PhysRevE.47.684
[25] S.S. Alexandre, E. Artacho, J.M. Soler, H. Chacham, Small polarons in dry DNA, Physical Review Letters 91 (2003) 108105. https://doi.org/10.1103/PhysRevLett.91.108105
[26] S. Komineas, G. Kalosakas, A.R. Bishop, Effects of intrinsic base-pair fluctuations on charge transport in DNA, Physical Review E 65 (2002) 061905. https://doi.org/10.1103/PhysRevE.65.061905
[27] J. Zhu, K.Ø. Rasmussen, A.V. Balatsky, A.R. Bishop, Local electronic structure in the Peyrard–Bishop–Holstein model, Journal of Physics: Condensed Matter 19 (2007) 136203. https://doi.org/10.1088/0953-8984/19/13/136203
[28] G. Kalosakas, S. Aubry, G.P. Tsironis, Polaron solutions and normal-mode analysis in the semiclassical Holstein model, Physical Review B 58 (1998) 3094. https://doi.org/10.1103/PhysRevB.58.3094
[29] T. Holstein, Studies of polaron motion: Part I. The molecular-crystal model, Annals of Physics 8 (1959) 325. https://doi.org/10.1016/0003-4916(59)90002-8
[30] D. Hennig, C. Neissner, M.G. Velarde, W. Ebeling, Effect of anharmonicity on charge transport in hydrogen-bonded systems, Physical Review B 73 (2006) 024306. https://doi.org/10.1103/PhysRevB.73.024306
[31] D. Hennig, Electron-vibron–breather interaction, Physical Review E 62(2000) 2846. https://doi.org/10.1103/PhysRevE.62.2846
[32] L. Hawke, G. Kalosakas, C. Simserides, Electronic parameters for charge transfer along DNA, The European Physical Journal E 32 (2010) 291. https://doi.org/10.1140/epje/i2010-10650-y
[33] S. Nos´e. A unified formulation of the constant temperature molecular dynamics methods, The Journal of chemical physics 81 (1984) 511. W.G. Hoover, Physical Review A 31 (1985) 1695. https://doi.org/10.1063/1.447334
[34] B. Li, H. Zhao, B. Hu, Can disorder induce a finite thermal conductivity in 1D lattices? Physical review letters 86.1 (2001) 63. https://doi.org/10.1103/PhysRevLett.86.63
[35] P. Maniadis, G. Kalosakas, K.Ø Rasmussen, A.R. Bishop, ac conductivity in a DNA charge transport model, Physical Review E 72(2005) 021912. https://doi.org/10.1103/PhysRevE.72.021912
[36] B. Hu, L. Yang, Y. Zhang, Asymmetric heat conduction in nonlinear lattices Physical review letters 97 12 (2006) 124302. https://doi.org/10.1103/PhysRevLett.97.124302
[37] Z.G. Shao, L. Yang, H.K. Chan, B. Hu, Transition from the exhibition to the nonexhibition of negative differential thermal resistance in the two-segment Frenkel-Kontorova model, Physical Review E 79 6 (2009) 061119. https://doi.org/10.1103/PhysRevE.79.061119
[38] S. Behnia, R. Panahinia. R. Designing thermal diode and heat pump based on DNA nanowire: Multifractal approach, Physics Letters A 381 (2017) 2077-2084. https://doi.org/10.1016/j.physleta.2017.02.044
 [39] H.H. Fu, D.D. Wu, Z.Q. Zhang, L. Gu, Spin-dependent Seebeck effect, thermal colossal magnetoresistance and negative differential thermoelectric resistance in zigzag silicene nanoribbon heterojunction, Scientific reports 5 (2015) 10547. https://doi.org/10.1038/srep10547
[40] J.H. Jiang, M. Kulkarni, D. Segal, Y. Imry, Phonon thermoelectric transistors and rectifiers, Physical Review B 92 4 (2015) 045309. https://doi.org/10.1103/PhysRevB.92.045309