[1] J. Chen, S.A. Darst, D. Thirumalai, Promoter melting triggered by bacterial RNA polymerase occurs in three steps,
Proceedings of the National Academy of Sciences U.S.A. 107 (2010) 12523.
https://doi.org/10.1073/pnas.1003533107
[4] T. Omabegho, R. Sha, N.C. Seeman, A bipedal DNA Brownian motor with coordinated legs, Science 324 (2009)67.
https://doi.org/10.1126/science.1170336
[5] A.K. Mazur, M. Maaloum, DNA flexibility on short length scales probed by atomic force microscopy, Physical Review Letters 112 (2014) 068104. https://doi.org/10.1103/PhysRevLett.112.068104
[10] O. Afshar, R. Saidur, M. Hasanuzzaman, M. Jameel, A review of thermodynamics and heat transfer in solar refrigeration system,
Renewable & Sustainable Energy Reviews 16 (2012) 5639.
https://doi.org/10.1016/j.rser.2012.05.016
[14] Y. Gelbstein, Z. Dashevsky, M.P. Dariel, High performance n-type PbTe-based materials for thermoelectric applications,
Physica B: Condensed. Matter 363 (2005) 196–205.
https://doi.org/10.1016/j.physb.2005.03.022
[16] M.W. Gaultois, T.D. Sparks, C.K.H. Borg, R. Seshadri, W.D. Bonificio, D.R. Clarke, Data-driven review of thermoelectric materials: performance and resource considerations,
Chemistry of Materials 25(2013)2911.
https://doi.org/10.1021/cm400893e
[17] S.K. Yee, S. LeBlanc, K.E. Goodson, C. Dames, per W metrics for thermoelectric power generation: beyond ZT, Energy & Environmental Science 6 (2013) 2561. https://doi.org/10.1039/C3EE41504J
[18] S. LeBlanc, S.K. Yee, M.L. Scullin, C. Dames, K.E. Goodson, Material and manufacturing cost considerations for thermoelectrics,
Renewable & Sustainable Energy Reviews 32 (2014) 313.
https://doi.org/10.1016/j.rser.2013.12.030
[20] D. Vashaee A. Shakouri, Improved thermoelectric power factor in metal-based superlattices, Physical Review Letters 92 (2004) 106103. https://doi.org/10.1103/PhysRevLett.92.106103
[21] M. Zebarjadi, K. Esfarjani, A. Shakouri, Nonlinear Peltier effect in semiconductors,
Applied Physics Letters 91 (2007) 122104.
https://doi.org/10.1063/1.2785154
[23] M. Leijnse, M.R. Wegewijs, K. Flensberg, Nonlinear thermoelectric properties of molecular junctions with vibrational coupling, Physical Review B 82 (2010) 045412. https://doi.org/10.1103/PhysRevB.82.045412
[24] T. Dauxois, M. Peyrard, A.R. Bishop, Dynamics and thermodynamics of a nonlinear model for DNA denaturation, Physical Review E 47(1993) R44. https://doi.org/10.1103/PhysRevE.47.684
[25] S.S. Alexandre, E. Artacho, J.M. Soler, H. Chacham, Small polarons in dry DNA, Physical Review Letters 91 (2003) 108105. https://doi.org/10.1103/PhysRevLett.91.108105
[26] S. Komineas, G. Kalosakas, A.R. Bishop, Effects of intrinsic base-pair fluctuations on charge transport in DNA, Physical Review E 65 (2002) 061905. https://doi.org/10.1103/PhysRevE.65.061905
[28] G. Kalosakas, S. Aubry, G.P. Tsironis, Polaron solutions and normal-mode analysis in the semiclassical Holstein model, Physical Review B 58 (1998) 3094. https://doi.org/10.1103/PhysRevB.58.3094
[30] D. Hennig, C. Neissner, M.G. Velarde, W. Ebeling, Effect of anharmonicity on charge transport in hydrogen-bonded systems, Physical Review B 73 (2006) 024306. https://doi.org/10.1103/PhysRevB.73.024306
[31] D. Hennig, Electron-vibron–breather interaction, Physical Review E 62(2000) 2846. https://doi.org/10.1103/PhysRevE.62.2846
[33] S. Nos´e. A unified formulation of the constant temperature molecular dynamics methods,
The Journal of chemical physics 81 (1984) 511. W.G. Hoover,
Physical Review A 31 (1985) 1695.
https://doi.org/10.1063/1.447334
[34] B. Li, H. Zhao, B. Hu, Can disorder induce a finite thermal conductivity in 1D lattices? Physical review letters 86.1 (2001) 63. https://doi.org/10.1103/PhysRevLett.86.63
[35] P. Maniadis, G. Kalosakas, K.Ø Rasmussen, A.R. Bishop, ac conductivity in a DNA charge transport model, Physical Review E 72(2005) 021912. https://doi.org/10.1103/PhysRevE.72.021912
[36] B. Hu, L. Yang, Y. Zhang, Asymmetric heat conduction in nonlinear lattices Physical review letters 97 12 (2006) 124302. https://doi.org/10.1103/PhysRevLett.97.124302
[37] Z.G. Shao, L. Yang, H.K. Chan, B. Hu, Transition from the exhibition to the nonexhibition of negative differential thermal resistance in the two-segment Frenkel-Kontorova model, Physical Review E 79 6 (2009) 061119. https://doi.org/10.1103/PhysRevE.79.061119
[39] H.H. Fu, D.D. Wu, Z.Q. Zhang, L. Gu, Spin-dependent Seebeck effect, thermal colossal magnetoresistance and negative differential thermoelectric resistance in zigzag silicene nanoribbon heterojunction,
Scientific reports 5 (2015) 10547.
https://doi.org/10.1038/srep10547
[40] J.H. Jiang, M. Kulkarni, D. Segal, Y. Imry, Phonon thermoelectric transistors and rectifiers, Physical Review B 92 4 (2015) 045309. https://doi.org/10.1103/PhysRevB.92.045309