[1] H.B.G. Casimir, On the attraction between two perfectly conducting plates, Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen 51 (1948) 793-795.
[2] M.J. Sparnaay, Measurements of attractive forces between flat plates, Physica 24 (1958) 751-764.
Doi: 10.1016/S0031-8914(58)80090-7
[3] M. Bordag, G.L. Klimchitskaya, U. Mohideen, Advances in the Casimir effect, 1st Ed. ed., New York: Oxford Univ. Press Inc., (2009).
[4] K.A. Milton, The Casimir Effect: Physical Manifestations of Zero-Point Energy, World Scientific Publishing Co. Pte. Ltd., (2001).
[5] M. Bordag, U. Mohideen, V.M. Mostepanenko, New Developments in the Casimir Effect, Physics Reports 353 (2001) 1-2.
Doi:10.1016/S0370-1573(01)00015-1
[6] M. Bordag, J. Lindig, Radiative correction to the Casimir force on a sphere Physical Review D 58 (1998) 045003. Doi:10.1103/PhysRevD.58.045003
[7] N. Graham, R. Jaffe, H. Weigel, Casimir effects in renormalizable quantum field theories, International Journal of Modern Physics A 17 (2002) 846-869.
Doi: 10.1142/S0217751X02010224
[8] N. Graham, R.L. Jaffe, V. Khemani, M. Quandt, M. Scandurra, H. Weigel, Calculating vacuum energies in renormalizable quantum field theories: A new approach to the Casimir problem, Nuclear Physics B 645 (2002) 49-84.
Doi: 10.1016/S0550-3213(02)00823-4
[9] X. Kong, F. Ravndal, Radiative corrections to the Casimir energy, Physical Review Letters 79 (1997) 545-548.
Doi: 10.1103/PhysRevLett.79.545
[10] K. Melnikov, Radiative corrections to the Casimir force and effective field theories, Physical Review. D 64 (2001) 045002.
Doi: 10.1103/PhysRevD.64.045002.
[11] F.A. Barone, R.M. Cavalcanti, C. Farina, Radiative corrections to the Casimir effect for the massive scalar field, Nuclear Physics B (Proc. Suppl.) 127 (2004) 118-122; Doi: 10.1016/S0920-5632(03)02411-3
R.M. Cavalcanti, C. Farina, F.A. Barone, Radiative corrections to Casimir effect in the model, arXiv:hep-th/0604200 (2006);
F.A. Barone, R.M. Cavalcanti, C. Farina, Radiative corrections to the Casimir effect for the massive scalar field, arXiv:hepth/0301238v1 (2003).
[12] R. Moazzemi, A. Mohammadi, S.S. Gousheh, A renormalized perturbation theory for problems with non-trivial boundary conditions or backgrounds in two space–time dimensions, European Physical Journal C 56 (2008) 585-590.
Doi: 10.1140/epjc/s10052-008-0680-9
[13] R. Moazzemi, M. Namdar, S.S. Gousheh, The Dirichlet Casimir effect for theory in (3 + 1) dimensions: a new renormalization approach, JHEP 09 (2007) 029.
Doi: 10.1088/1126-6708/2007/09/029
[14] R. Moazzemi, S.S. Gousheh, A new renormalization approach to the Dirichlet Casimir effect for theory in 1+1 dimensions, Physics Letters B 658 (2008) 255-265.
Doi: 10.1016/j.physletb.2007.08.098
[15] S.S. Gousheh, R. Moazzemi, M.A. Valuyan, Radiative correction to the Dirichlet Casimir energy for theory in two spatial dimensions, Physics Letters B 681 (2009) 477-483.
Doi: 10.1016/j.physletb.2009.10.058
[16] M.A. Valuyan, Casimir Energy Calculation for Massive Scalar Field on Spherical Surface: An Alternative Approach, Canadian Journal of Physics 96 (2018) 1004-1009.Doi: 10.1139/cjp-2017-0722
[17] M.A. Valuyan, Radiative correction to the Casimir energy for massive scalar field on a spherical surface, Modern Physics Letters A 32 (2017) 1750128.
Doi: 10.1142/S0217732317501280
[18] V.V. Nesterenko I.G. Pirozhenko, Spectral Zeta Functions for a Cylinder and a Circle, Journal of Mathematical Physics 41 (2000) 4521-4531.
Doi:10.1063/1.533358
M.A. Valuyan, The Casimir energy for scalar field with mixed boundary condition, International Journal of Geometric Methods in Modern Physics 15 (2018) 1850172.
Doi: 10.1142/S0219887818501724
[19] R. Balian, B. Duplantier, Electromagnetic waves near perfect conductors, Annals of Physics (N.Y.) 112 (1978) 165-208.
Doi: 10.1016/0003-4916(77)90334-7
[20] K.A. Milton, L.L. Deraad, J. Schwinger, Casimir self-stress on a perfectly conducting spherical shell, Annals of Physics (N.Y.) 115 (1978) 388.
Doi: 10.1016/0003-4916(78)90161-6
[21] M.A. Valuyan, The Dirichlet Casimir energy for theory in a rectangular waveguide, Journal of Physics G: Nuclear and Particle Physics 45 (2018) 095006.
Doi: 10.1088/1361-6471/aad625
M.A. Valuyan, The Dirichlet Casimir energy for the theory in a rectangle, Eur. Phys. J Plus. 133 (2018) 401. Doi: 10.1140/epjp/i2018-12206-8
[22] T.H. Boyer, Quantum Electromagnetic Zero-Point Energy of a Conducting Spherical Shell and the Casimir Model for a Charged Particle, Physical Review 174 (1968) 1764.
Doi: 10.1103/PhysRev.174.1764
[23] A.A. Saharian, The Generalized Abel-Plana Formula: Applications To Bessel Functions And Casimir Effect, IC/2007/082 (2000) [hep-th/0002239 v1].