Coulombic atomic descriptor for machine learning applications in condensed matter physics

Document Type : Full length research Paper

Authors

Department of Physics, Shahid Beheshti University, Tehran, Iran

Abstract

A main class of machine learning approaches aims at predicting a label or value of some quantity from a set of input data (e.g., recognizing a face from the pixels of a digital image). As an example of the application of such techniques in computational condensed matter physics, we demonstrate here an accurate prediction of the atomic contributions into some physical quantity from the arrangement of neighboring atoms. We introduce a descriptor that quantifies the environment of each atom and is filled by the eigenvalues of an approximate Coulomb matrix. The descriptor is invariant under rotation or translation of the molecule and the permutation of the atomic indices. It captures fine structural deformations including the change of the four-body, dihedral angles. Employing this atomic descriptor, we exemplify a promising case where the charges on different atomic species in the molecule are predicted my machine learning to within one tenth of the elementary charge.

Keywords


 
[1] J. Carrasquilla, R.G. Melko, Machine learning phases of matter, Nature Physics 13.5 (2017) 431.doi.org/10.1038/nphys4035
 
[2] G. Carleo, M. Troyer, Solving the quantum many-body problem with artificial neural networks. Science 355.6325 (2017) 602-606.doi.org/10.1126/science.aag2302
[3] F. Brockherde, et al., Bypassing the Kohn-Sham equations with machine learning, Nature communications 8.1 (2017) 872. doi.org/10.1038/s41467-017-00839-3
 
[4] J. Behler, M. Parrinello., Generalized neural-network representation of high-dimensional potential-energy surfaces, Physical review letters 98.14 (2007) 146401.
 
[5] P. Elliott, K. Burke, M.H. Cohen, A. Wasserman, Partition density-functional theory, Physical Review A 82.2 (2010) 024501.  doi.org/10.1103/PhysRevA.82.024501
 
[6] S. Goedecker,Linear scaling electronic structure methods, Reviews of Modern Physics 71.4 (1999) 1085.
 
[7] S.A. Ghasemi, A. Hofstetter, S. Saha, S. Goedecker, Interatomic potentials for ionic systems with density functional accuracy based on charge densities obtained by a neural network, Physical Review B 92.4 (2015) 045131.
 
[8] A. Sadeghi, S.A. Ghasemi, B. Schaefer, S. Mohr, M.A. Lill, S. Goedecker, Metrics for measuring distances in configuration spaces, The Journal of chemical physics 139, (2013) 184118. doi.org/10.1063/1.4828704
 
[9] L. Zhu, M. Amsler, T. Fuhrer, B. Schaefer, S. Faraji, S. Rostami, S.A. Ghasemi, A. Sadeghi, M.Grauzinyte, C. Wolverton, S. Goedecker, A fingerprint based metric for measuring similarities of crystalline structures, The Journal of chemical physics 144, (2016) 034203. doi.org/10.1063/1.4940026
 
[10] F. Pietrucci, W. Andreoni, Graph theory meets ab initio molecular dynamics: atomic structures and transformations at the nanoscale, Physical review letters 107, (2011) 085504.
 
[11] M. Rupp, A. Tkatchenko, K.R. Müller, O.A.V. Lilienfeld, Fast and accurate modeling of molecular atomization energies with machine learning, Physical review letters 108, (2012): 058301. doi.org/10.1103/PhysRevLett.108.058301
 
[12] K. Vu, J.C. Snyder, L. Li, M. Rupp, B.F. Chen, T. Khelif, K.R. Müller, K. Burke, Understanding kernel ridge regression: Common behaviors from simple functions to density functional,  International Journal of Quantum Chemistry 115 (2015) 1115-1128.
 
[13] B. Aradi, B. Hourahine, Th. Frauenheim, DFTB+, a sparse matrix-based implementation of the DFTB method, The Journal of Physical Chemistry A 111 (2007) 5678. doi.org/10.1021/jp070186p
[14] م. مسجدی، ز. محمدی، م. اعلایی، ا. عبدالحسینی سارسری، ت. نیهاس، اثر اندازه بر طیف اپتیکی نانومولکول‌های رنگدانه‌ای کومارین با استفاده از رهیافت‌های تابعی چگالی تنگابست وابسته به‌زمان و تابعی چگالی وابسته به‌زمان فوق سریع، پژوهش سیستم‌های بس‌ذره‌ای 6 (1395) 31-15.
 
[14] I. Abdolhosseini Sarsari, T. Niehaus, Size effect on optical spectrum of coumarin nano molecule dyes via TD-DFTB and turbo-TDDFT approaches, Journal of Research on Many-body Systems 6 (2016) 5-31. doi.org/10.22055/jrmbs.2016.12449
 
[15] V.Q. Vuong, J. Akkarapattiakal Kuriappan, M. Kubillus, J.J. Kranz, T. Mast, T.A. Niehaus, S. Irle, M. Elstner: Parametrization and benchmark of long-range corrected DFTB2 for organic molecules, Journal of Chemical Theory and Computation 14 (2017) 115-125.