Dynamical phase transition in n-cluster spin model

Document Type : Full length research Paper

Authors

1 Buein Zahra Technical University (BZTE)

2 Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran

Abstract

In this paper we consider a spin chain with cluster interaction which is under the transverse magnetic field and study its dynamical behavior as the magnetic field changes suddenly. Such a system, has exact solution by means of Jordan-Wigner transformations. We show that if the magnetic field changes in such a way that its initial and finial value be in two different equilibrium phase, then rate function of return probability diverges periodically in time which, this divergence in time, is called dynamical phase transition. If the quench has been done within the same phase, dynamical phase transition doesn’t happen. Furthermore, we have shown that Fisher zeros lines cross the imaginary axes when the dynamical phase transition occurs.

Keywords

Main Subjects


 
[1] R. Jafari,Thermodynamic properties of the one-dimensional extended quantum compass model in the presence of a transverse field, The European Physical Journal B 85 (2012) 167.
[2] S. Montes, A. Hamma, Phase diagram and quench dynamics of the cluster-XY spin chain, Physical Review E 86 (2012) 021101.
[3] J. Häppölä, G.B. Halász, A. Hamma, Universality and robustness of revivals in the transverse field XY model, Physical Review A 85(2012)032114.
[4] W.H. Zurek, U. Dorner, P. Zoller, Dynamics of a quantum phase transition, Physical Review Letters 95(2005) 105701.
[5] D.M. Kennes, V. Meden, R. Vasseur, Universal quench dynamics of interacting quantum impurity systems, Physical Review B 90 (2014) 115101.
[6] R. Jafari, H. Johannesson, Loschmidt echo revivals: critical and noncritical, Physical Review Letters 118 (2017) 015701.
[7] R. Jafari, H. Johannesson, Decoherence from spin environments: Loschmidt echo and quasiparticle excitations, Physical Review B 96 (2017) 224302.
[8] A.K. Chandra, A. Das, B.K. Chakrabarti, Quantum Phase Transitions in Transverse Field Spin Models: From Statistical Physics to Quantum Information, Cambridge University Press, Cambridge, (2015).
[9] M. Kolodrubetz, B.K. Clark, D.A. Huse, Nonequilibrium dynamic critical scaling of the quantum Ising chain, Physical Review Letters 109 (2012) 015701.
[10] J.C. Halimeh, V. Zauner-Stauber, Dynamical phase diagram of quantum spin chains with long-range interactions, Physical Review B 96 (2017) 134427.
[11] M. Heyl, A. Polkovnikov, S. Kehrein, Dynamical quantum phase transitions in the transverse-field Ising model, Physical Review Letters 110 (2013) 135704.
[12] A. LeClair, G. Mussardo, H. Saleur, S. Skorik, Boundary energy and boundary states in integrable quantum field theories, Nuclear Physics B 453 (1995) 581–618.
[13] S. Vajna, B. Dóra, Disentangling dynamical phase transitions from equilibrium phase transitions, Physical Review B 89 (2014) 161105.
[14] F. Andraschko, J. Sirker, Dynamical quantum phase transitions and the Loschmidt echo: A transfer matrix approach, Physical Review B 89 (2014) 125120.
[15] U. Divakaran, S. Sharma, A. Dutta, Tuning the presence of dynamical phase transitions in a generalized XY spin chain, Physical Review E 93(2016) 052133.
[16] M. Heyl, Dynamical quantum phase transitions: a review, Reports on Progress in Physics 81 (2018) 054001.
[17] S. Sharma, S. Suzuki, A. Dutta, Quenches and dynamical phase transitions in a non-integrable quantum Ising model, Physical Review B 92 (2015) 104306.
[18] V. Zauner-Stauber, J.C. Halimeh, Probing the anomalous dynamical phase in long-range quantum spin chains through Fisher-zero lines, Physical Review E 96  (2017) 062118.
[19] J. Lang, B. Frank, J.C. Halimeh, Dynamical quantum phase transitions: a geometric picture, Physical Review Letters 121 (2018) 130603.
[20] J. Lang, B. Frank, J.C. Halimeh, Concurrence of dynamical phase transitions at finite temperature in the fully connected transverse-field Ising model, Physical Review B 97 (2018) 174401.
[21] R. Jafari, Dynamical quantum phase transition and quasi particle excitation, Scientific Reports 9 (2019) 2871.
[22] R. Jafari, H. Johannesson, A. Langari, M.A. Martin-Delgado, Quench dynamics and zero-energy modes: The case of the Creutz model, Physical Review B 99 (2018) 054302.
[23] S. Vajna, B. Dóra, Topological classification of dynamical phase transitions, Physical Review B 91 (2015) 155127.
[24] M. Schmitt, S. Kehrein, Dynamical quantum phase transitions in the Kitaev honeycomb model, Physical Review B 92 (2015) 075114.
[25] J.C. Budich, M. Heyl, Dynamical topological order parameters far from equilibrium, Physical Review B 93 (2016) 085416.
[26] S. Sharma, U. Divakaran, A. Polkovnikov, A. Dutta, Slow quenches in a quantum Ising chain: Dynamical phase transitions and topology, Physical Review B 93 (2016) 144306.
[27] I. Bloch, J. Dalibard, W. Zwerger, Many-body physics with ultracold gases, Review of Modern Physics 80 (2008) 885.
[28] D. Chen, M. White, C. Borries, B. DeMarco, Quantum quench of an atomic mott insulator, Physical Review Letters 106 (2011) 235304.
[29] D. Chen, C. Meldgin, B. DeMarco, Bath-induced band decay of a hubbard lattice gas, Physical Review A 90 (2014) 013602.
[30] A. Polkovnikov, K. Sengupta, A. Silva, M. Vengalattore, Colloquium: Nonequilibrium dynamics of closed interacting quantum systems, Review of Modern Physics 83 (2011) 863–883.
[31] J.K. Pachos, M.B. Plenio, Three-spin interactions in optical lattices and criticality in cluster Hamiltonians, Physical Review Letters 93 (2004) 056402.
[32] H.J. Briegel, R. Raussendorf, Persistent entanglement in arrays of interacting particles, Physical Review Letters 86 (2001) 910.
[33] G. Zonzo, S.M. Giampaolo, N-cluster models in a transverse magnetic field, Journal of Statistical Mechanic: Theory and Experiment (2018) 063103.
[34] P. Jordan, E.Z. Wigner, Über das Paulische Äquivalenzverbot, Physik 47 (1928) 631-651.
[35] E. Barouch, B.M. McCoy, M. Dresden, Statistical mechanics of the XY model. I, Physical Review A 2 (1970) 1075.
[36] E. Lieb, T. Shultz, D. Mattis, Two soluble models of an antiferromagnetic chain, Annual Physics 16(1961) 407-466.
[37] P. Smacchia, L. Amico, P. Facchi, R. Fazio, G. Florio, S. Pascazio, V. Vedral, Statistical mechanics of the cluster Ising model, Physical Review A 84(2011) 022304.
[38] S.M. Giampaolo, B. Hiesmayr, Topological and nematic ordered phases in many-body cluster-Ising models, Physical Review A 92 (2015) 012306.
[39] E. Barouch, B.M. McCoy, Statistical mechanics of the XY model. II. spin-correlation functions, Physical Review A 3(1971) 786.
[40] M. Kolodrubetz, B.K. Clark, D.A. Huse, Nonequilibrium dynamic critical scaling of the quantum Ising chain, Physical Review Letters 109 (2012) 015701.