[1] R. Jafari,Thermodynamic properties of the one-dimensional extended quantum compass model in the presence of a transverse field, The European Physical Journal B 85 (2012) 167.
[2] S. Montes, A. Hamma, Phase diagram and quench dynamics of the cluster-XY spin chain, Physical Review E 86 (2012) 021101.
[3] J. Häppölä, G.B. Halász, A. Hamma, Universality and robustness of revivals in the transverse field XY model, Physical Review A 85(2012)032114.
[4] W.H. Zurek, U. Dorner, P. Zoller, Dynamics of a quantum phase transition, Physical Review Letters 95(2005) 105701.
[5] D.M. Kennes, V. Meden, R. Vasseur, Universal quench dynamics of interacting quantum impurity systems, Physical Review B 90 (2014) 115101.
[6] R. Jafari, H. Johannesson, Loschmidt echo revivals: critical and noncritical, Physical Review Letters 118 (2017) 015701.
[7] R. Jafari, H. Johannesson, Decoherence from spin environments: Loschmidt echo and quasiparticle excitations, Physical Review B 96 (2017) 224302.
[8] A.K. Chandra, A. Das, B.K. Chakrabarti, Quantum Phase Transitions in Transverse Field Spin Models: From Statistical Physics to Quantum Information, Cambridge University Press, Cambridge, (2015).
[9] M. Kolodrubetz, B.K. Clark, D.A. Huse, Nonequilibrium dynamic critical scaling of the quantum Ising chain, Physical Review Letters 109 (2012) 015701.
[10] J.C. Halimeh, V. Zauner-Stauber, Dynamical phase diagram of quantum spin chains with long-range interactions, Physical Review B 96 (2017) 134427.
[11] M. Heyl, A. Polkovnikov, S. Kehrein, Dynamical quantum phase transitions in the transverse-field Ising model, Physical Review Letters 110 (2013) 135704.
[12] A. LeClair, G. Mussardo, H. Saleur, S. Skorik, Boundary energy and boundary states in integrable quantum field theories, Nuclear Physics B 453 (1995) 581–618.
[13] S. Vajna, B. Dóra, Disentangling dynamical phase transitions from equilibrium phase transitions, Physical Review B 89 (2014) 161105.
[14] F. Andraschko, J. Sirker, Dynamical quantum phase transitions and the Loschmidt echo: A transfer matrix approach, Physical Review B 89 (2014) 125120.
[15] U. Divakaran, S. Sharma, A. Dutta, Tuning the presence of dynamical phase transitions in a generalized XY spin chain, Physical Review E 93(2016) 052133.
[16] M. Heyl, Dynamical quantum phase transitions: a review, Reports on Progress in Physics 81 (2018) 054001.
[17] S. Sharma, S. Suzuki, A. Dutta, Quenches and dynamical phase transitions in a non-integrable quantum Ising model, Physical Review B 92 (2015) 104306.
[18] V. Zauner-Stauber, J.C. Halimeh, Probing the anomalous dynamical phase in long-range quantum spin chains through Fisher-zero lines, Physical Review E 96 (2017) 062118.
[19] J. Lang, B. Frank, J.C. Halimeh, Dynamical quantum phase transitions: a geometric picture, Physical Review Letters 121 (2018) 130603.
[20] J. Lang, B. Frank, J.C. Halimeh, Concurrence of dynamical phase transitions at finite temperature in the fully connected transverse-field Ising model, Physical Review B 97 (2018) 174401.
[21] R. Jafari, Dynamical quantum phase transition and quasi particle excitation, Scientific Reports 9 (2019) 2871.
[22] R. Jafari, H. Johannesson, A. Langari, M.A. Martin-Delgado, Quench dynamics and zero-energy modes: The case of the Creutz model, Physical Review B 99 (2018) 054302.
[23] S. Vajna, B. Dóra, Topological classification of dynamical phase transitions, Physical Review B 91 (2015) 155127.
[24] M. Schmitt, S. Kehrein, Dynamical quantum phase transitions in the Kitaev honeycomb model, Physical Review B 92 (2015) 075114.
[25] J.C. Budich, M. Heyl, Dynamical topological order parameters far from equilibrium, Physical Review B 93 (2016) 085416.
[26] S. Sharma, U. Divakaran, A. Polkovnikov, A. Dutta, Slow quenches in a quantum Ising chain: Dynamical phase transitions and topology, Physical Review B 93 (2016) 144306.
[27] I. Bloch, J. Dalibard, W. Zwerger, Many-body physics with ultracold gases, Review of Modern Physics 80 (2008) 885.
[28] D. Chen, M. White, C. Borries, B. DeMarco, Quantum quench of an atomic mott insulator, Physical Review Letters 106 (2011) 235304.
[29] D. Chen, C. Meldgin, B. DeMarco, Bath-induced band decay of a hubbard lattice gas, Physical Review A 90 (2014) 013602.
[30] A. Polkovnikov, K. Sengupta, A. Silva, M. Vengalattore, Colloquium: Nonequilibrium dynamics of closed interacting quantum systems, Review of Modern Physics 83 (2011) 863–883.
[31] J.K. Pachos, M.B. Plenio, Three-spin interactions in optical lattices and criticality in cluster Hamiltonians, Physical Review Letters 93 (2004) 056402.
[32] H.J. Briegel, R. Raussendorf, Persistent entanglement in arrays of interacting particles, Physical Review Letters 86 (2001) 910.
[33] G. Zonzo, S.M. Giampaolo, N-cluster models in a transverse magnetic field, Journal of Statistical Mechanic: Theory and Experiment (2018) 063103.
[34] P. Jordan, E.Z. Wigner, Über das Paulische Äquivalenzverbot, Physik 47 (1928) 631-651.
[35] E. Barouch, B.M. McCoy, M. Dresden, Statistical mechanics of the XY model. I, Physical Review A 2 (1970) 1075.
[36] E. Lieb, T. Shultz, D. Mattis, Two soluble models of an antiferromagnetic chain, Annual Physics 16(1961) 407-466.
[37] P. Smacchia, L. Amico, P. Facchi, R. Fazio, G. Florio, S. Pascazio, V. Vedral, Statistical mechanics of the cluster Ising model, Physical Review A 84(2011) 022304.
[38] S.M. Giampaolo, B. Hiesmayr, Topological and nematic ordered phases in many-body cluster-Ising models, Physical Review A 92 (2015) 012306.
[39] E. Barouch, B.M. McCoy, Statistical mechanics of the XY model. II. spin-correlation functions, Physical Review A 3(1971) 786.
[40] M. Kolodrubetz, B.K. Clark, D.A. Huse, Nonequilibrium dynamic critical scaling of the quantum Ising chain, Physical Review Letters 109 (2012) 015701.