Calculation of band structure, dielectric function and electron energy loss spectrum of bilayer h-BN under biaxial strain

Document Type : Full length research Paper


Department of Engineering Physics, Kermanshah University of Technology, Kermanshah, Iran


In this study, the electronic and optical properties of bilayer h-BN under in-plane biaxial strain were investigated using density functional theory. The total energy calculations show that the AB stacking configuration is more stable than AA stacking configuration. The strain-free bilayer h-BN has an indirect band gap of 4/33 eV along the K M direction. By applying the compressive strain the conduction band minimum at the M point moves upward and the conduction band edge at the point moves downward. The optical spectra of bilayer h-BN, including the dielectric function and electron energy loss spectrum, move to lower (higher) energies under tensile (compressive) strain.


Main Subjects

[1] F. Guinea, M.I. Katsnelson, A.K. Geim, Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering, Nature Physics 6 (2009) 30-33.
[2] Y. Fujimoto, S. Saito, Hydrogen adsorption and anomalous electronic properties of nitrogen-doped graphene, Journal of Applied Physics 115 (2014) 153701-153706.
[3] S.Y. Zhou, G.H. Gweon, A.V. Fedorov, P.N. First, W.A. de Heer, D.H. Lee, F. Guinea, A.H. Castro Neto, A. Lanzara, Substrate-induced bandgap opening in epitaxial graphene, Nature Materials 6 (2007) 770-775.
[4] Y.-W. Son, M.L. Cohen, S.G. Louie, Energy Gaps in Graphene Nanoribbons, Physical Review Letters 97 (2006) 216803-2168037.
[5] V.M. Pereira, A.H. Castro Neto, N.M.R. Peres, Tight-binding approach to uniaxial strain in graphene, Physical Review B 80 (2009) 045401-045409.
[6] F. Xia, D.B. Farmer, Y.-m. Lin, P. Avouris, Graphene Field-Effect Transistors with High On/Off Current Ratio and Large Transport Band Gap at Room Temperature, Nano Letters 10 (2010) 715-718.
[7] Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M.C. Martin, A. Zettl, M.F. Crommie, Y.R. Shen, F. Wang, Direct observation of a widely tunable bandgap in bilayer graphene, Nature 459 (2009) 820-823.
[8] M. Topsakal, E. Aktürk, S. Ciraci, First-principles study of two- and one-dimensional honeycomb structures of boron nitride, Physical Review B 79 (2009) 115442-115453.
[9] L.H. Li, J. Cervenka, K. Watanabe, T. Taniguchi and Y. Chen, Strong Oxidation Resistance of Atomically Thin Boron Nitride Nanosheets, ACS Nano 8 (2014) 1457-1462.
[10] Q. Cai, D. Scullion, W. Gan, A. Falin, S. Zhang, K. Watanabe, T. Taniguchi, Y. Chen, E.J.G. Santos, L.H. Li, High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion, Science Advances 5 (2019) 129-137.
[11] L. Sponza, H. Amara, C. Attaccalite, S. Latil, T. Galvani, F. Paleari, L. Wirtz and F. Ducastelle, Direct and indirect excitons in boron nitride polymorphs: A story of atomic configuration and electronic correlation, Physical Review B 98 (2018) 125206-125223.
[12] J. Kang, L. Zhang, S.H. Wei, A Unified Understanding of the Thickness-Dependent Bandgap Transition in Hexagonal Two-Dimensional Semiconductors, The Journal of Physical Chemistry Letters 7 (2016) 597-602.
[13] L. Wang, Y. Pu, A.K. Soh, Y. Shi and S. Liu, Layers dependent dielectric properties of two dimensional hexagonal boron nitridenanosheets, AIP Advances 6 (2016) 125126-125132.
[14] K. Zhang, Y. Feng, F. Wang, Z. Yang and J. Wang, Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications, Journal of Materials Chemistry C 5 (2017) 11992-12022.
[15] S.-M. Choi, S.-H. Jhi, Y.-W. Son, Effects of strain on electronic properties of graphene, Physical Review B 81 (2010) 081407-081411.
[16] D. Moldovan, F.M. Peeters, Strain engineering of the electronic properties of bilayer graphene quantum dots, physica status solidi (RRL) – Rapid Research Letters 10 (2016) 39-45.
[17] X. Zhong, Y.K. Yap, R. Pandey and S.P. Karna, First-principles study of strain-induced modulation of energy gaps of graphene/BN and BN bilayers, Physical Review B 83 (2011) 193403-193407.
[18] Y. Fujimoto, S. Saito, Effects of strain on carbon donors and acceptors in hexagonal boron nitride monolayers, Physical Review B 93 (2016) 045402-045409.
[19] T. Han, Y. Luo and C. Wang, Effects of temperature and strain rate on the mechanical properties of hexagonal boron nitride nanosheets, Journal of Physics D: Applied Physics 47 (2013) 025303-025311.
[20] Y. Fujimoto, T. Koretsune and S. Saito, Electronic structures of hexagonal boron-nitride monolayer: strain-induced effects, Journal of the Ceramic Society of Japan, 122 (2014) 346-348.
[21] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna University of Technology, Austria, 2001).
[22] J.P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Physical Review B 23 (1981) 5048-5079.
[23] W.-Q. Han, L. Wu, Y. Zhu, K. Watanabe, T. Taniguchi, Structure of chemically derived mono- and few-atomic- layer boron nitride sheets, Applied Physics Letters 93 (2008) 223103-223106.
[24] Z. Yang, J. Ni, Modulation of electronic properties of hexagonal boron nitride bilayers by an electric field: A first principles study, Journal of Applied Physics 107 (2010) 104301-104305.
[25] G.-Y. Guo, Systematic ab initio study of the optical properties of BN nanotubes, Physical Review B 71 (2005) 165402-165414.
[26] Y. Fujimoto, S. Saito, Band engineering and relative stabilities of hexagonal boron nitride bilayers under biaxial strain, Physical Review B 94 (2016) 245427-245435.
[27] R. Abt, C. Ambrosch-Draxl, P. Knoll, Optical response of high temperature superconductors by full potential LAPW band structure calculations, Physica B: Condensed Matter 194-196 (1994) 1451-1452.
[28] C.F. Klingshirn, "Semiconductor Optics", Springer (2006).