Estimation of the Non-Universal Parameters for some discrete growth models belonging to the KPZ class

Document Type : Full length research Paper

Author

Department of Physics, Faculty of Basic Sciences, University of Neyshabur, P.O. Box 91136-899, Neyshabur, Iran

Abstract

In this paper, we try to estimate the non-universal parameters of some discrete growth models belonging to the Kardar-Parisi-Zhang (KPZ) universality class in both one and two dimensions. Based on a comprehensive numerical investigation, we obtain these parameters with good accuracy compared to other reports. The most important result of the present paper is the estimation of the nonlinear parameter of the KPZ equation with excellent accuracy. For this purpose, we apply the tilt method as a useful tool to characterize the nonlinearities of their associated equation. We believe this method can be used to ensure that there is a nonlinearity type square height-gradient for others discrete growth models.

Keywords

Main Subjects


[1] A.-L. Barabási, H.E. Stanley, Fractal Concepts in Surface Growth, Cambridge University Press (1995).
[2] M. Kardar, G. Parisi, Y.C. Zhang, Dynamic scaling of growing interfaces. Physical Review Letters 56.9 (1986) 889. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.56.889
[3] S.F. Edwards, D.R. Wilkinson, (1982). The surface statistics of a granular aggregate, Proceedings of the Royal Society A 381(1780) 17. https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1982.0056
[4] E. Altman, L.M. Sieberer, L. Chen, S. Diehl, J. Toner, Two-dimensional superfluidity of exciton polaritons requires strong anisotropy, Physical Review X 5.1 (2015) 011017. https://journals.aps.org/prx/abstract/10.1103/PhysRevX.5.011017
[5] T. Halpin-Healy, Directed polymers in random media: Probability distributions, Physical Review A 44.6 (1991) R3415.
 [6] J. Krug, P. Meakin, T. Halpin-Healy, Amplitude universality for driven interfaces and directed polymers in random media. Physical Review A 45.2 (1992) 638. https://journals.aps.org/pra/abstract/10.1103/PhysRevA.45.638
 [7] I.M. Johnstone, On the Distribution of the Largest Eigenvalue in Principal Components Analysis, The Annals of Statistics 29 (2001) 295. https://www.jstor.org/stable/2674106?seq=1
[8] J. Krug, Classification of some deposition and growth processes. Journal of Physics A: Mathematical and General 22.16 (1989) L769.https://iopscience.iop.org/article/10.1088/0305-4470/22/16/002/meta
 [9] E. Daryaei, Universality and crossover behavior of single-step growth models in 1+1 and 2+1 dimensions, Physical Review E 101.6 (2020) 062108. https://journals.aps.org/pre/abstract/10.1103/PhysRevE.101.062108
[10] A. Pagnani, G. Parisi, Numerical estimate of the Kardar-Parisi-Zhang universality class in (2+ 1) dimensions, Physical Review E 92.1 (2015) 010101. https://journals.aps.org/pre/abstract/10.1103/PhysRevE.92.010101

[11] J. Krug, P. Meakin, Universal finite-size effects in the rate of growth processes, Journal of Physics A: Mathematical and General 23, (1990) L987. https://iopscience.iop.org/article/10.1088/0305-4470/23/18/009/meta

 [12] J. Krug, H. Spohn, Mechanism for rough-to-rough transitions in surface growth. Physical Review Letter 64.19 (1990) 2332. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.64.2332
[13] T.J. Oliveira, S.C. Ferreira, S.G. Alves, Universal fluctuations in Kardar-Parisi-Zhang growth on one-dimensional flat substrates. Physical Review E 85.1 (2012) 010601. https://journals.aps.org/pre/abstract/10.1103/PhysRevE.85.010601
[14] J. Krug, P. Meakin, T. Halpin-Healy, Amplitude universality for driven interfaces and directed polymers in random media, Physical Review A 45.2 (1992) 638. https://journals.aps.org/pra/abstract/10.1103/PhysRevA.45.638
[15] T.J. Oliveira, S.G. Alves, S.C. Ferreira, Kardar-Parisi-Zhang universality class in (2+ 1) dimensions: Universal geometry-dependent distributions and finite-time corrections. Physical Review E 87.4 (2013) 040102. https://journals.aps.org/pre/abstract/10.1103/PhysRevE.87.040102
[16] M. Torres, R. Buceta, Growing interfaces: A brief review on the tilt method, arXiv:1711.09652 (2017). https://arxiv.org/abs/1711.09652
[17]S.G. Alves, T.J. Oliveira, S.C. Ferreira, Origins of scaling corrections in ballistic growth models. Physical Review E 90.5 (2014) 052405. https://journals.aps.org/pre/abstract/10.1103/PhysRevE.90.052405
[18] Halpin-Healy, Timothy, (2+ 1)-dimensional directed polymer in a random medium: Scaling phenomena and universal distributions, Physical Review Letter 109.17 (2012) 170602. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.109.170602