[1] S. Mahajan, Pollution control in process industries, Tata McGraw-Hill Education, (1985).
[3] M. Penza, G. Cassano, P. Aversa, F. Antolini, A. Cusano, A. Cutolo, M. Giordano, L. Nicolais, Alcohol detection using carbon nanotubes acoustic and optical sensors,
Applied Physics Letters 85 12 (2004) 2379–2381.
https://doi.org/10.1063/1.1784872
[5] S. Kulinyi, D. Brandszájsz, H. Amine, M. Ádám, P. Fürjes, I. Bársony, C. Dücso. Olfactorydetection of methane, propane, butane and hexane using conventional transmitter norms.Sens
. Actuators B 111 (2005) 286–292.
https://doi.org/10.1016/j.snb.2005.06.068
[7] R. Bhuvaneswari, V. Nagarajan, R. Chandiramouli, Arsenene nanoribbons for sensing nh3 and ph3 gas molecules–a first-principles perspective,
Applied Surface Science 469 (2019) 173–180.
https://doi.org/10.1016/j.apsusc.2018.11.003
[8]. P. Snehha, V. Nagarajan, R. Chandiramouli, Novel bismuthene nanotubes to detect nh3, no2 and ph3 gas molecules–a first-principles insight,
Chemical Physics Letters 712 (2018) 102–111.
https://doi.org/10.1016/j.cplett.2018.09.068
[9] U. Treske, F. Ortmann, B. Oetzel, K. Hannewald, F. Bechstedt, Electronic and transport properties of graphene nanoribbons,
physica status solidi (a) 207 2 (2010) 304-308.
https://doi.org/10.1002/pssa.200982445
[11] K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, H.L. Stormer, Ultrahigh electron mobility in suspended graphene,
Solid State Communications 146 (2008) 351-355.
https://doi.org/10.1016/j.ssc.2008.02.024
[12]L. Yang, C.H. Park, Y.W. Son, M.L. Cohen, S.G. Louie, Quasiparticle energies and band gaps in graphene nanoribbons,
Physical Review Letters 9918(2007).
https://doi.org/10.1103/PhysRevLett.99.186801
[13] B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini, B. Ealet, and B. Aufray, Epitaxial growth of a silicene sheet,
Applied Physics Letters 97 (2010) 223109.
https://doi.org/10.1063/1.3524215
[14] P. Vogt, P.D. Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M. Asensio, A. Resta, B. Ealet, G.L. Lay, Silicene: compelling experimental evidence for graphenelike twodimensional silicon
, Physical review letters 108 (2012) 155501.
https://doi.org/10.1103/PhysRevLett.108.155501
[17] J. Kushmerick, K. Kelly, H.-P. Rust, N. Halas, P. Weiss, Observations of anisotropic electron scattering on graphite with a lowtemperature scanning tunneling microscope,
The Journal of Physical Chemistry B 103 (1999) 1619-1622.
https://doi.org/10.1021/jp983648v
[18] A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, S. Iijima, Direct evidence for atomic defects in graphene layers,
Nature 430 (2004) 870-873.
https://doi.org/10.1038/nature02817
[19] V.M. Pereira, F. Guinea, J.L. Dos Santos, N. Peres, A.C. Neto, Erratum: Disorder Induced Localized States in Graphene, Physical Review Letters 96 (2006) 036801/1-036801/4. https://doi.org/10.1103/PhysRevLett.96.0.036801
[20] D. Sholl, J.A. Steckel, Density functional theory: a practical introduction, John Wiley & Sons (2011).
[21] Marques, M.A., et al., Time-dependent density functional theory, Springer Science & Business Media 706 (2006).
[22] P. Giannozzi, et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of physics: Condensed matter 2139(2009)395502. https://doi.org/10.1088/09538984/21/39/395502
[23] O.B. Malcıoglu, R. Gebauer, D. Rocca, S. Baroni, turboTDDFT – a code for the simulation of molecular spectra using the Liouville-Lanczos approach to timedependent density-functional perturbation theory,
Computer Physics Communications, (2010) 1744-1754.
https://doi.org/10.1016/j.cpc.2011.04.020
[24] J P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple
, Physical review letters 77 (1996) 38653868.
10.1103/physrevlett.77.3865
[25] S. Lebegue and O. Eriksson,
Physical Review B 79, 115409 (2009).
https://doi.org/10.1103/PhysRevB.79.115409