First principle study of the modulation of plasmon modes in diamond crystal under pressure through energy loss spectrum

Document Type : Full length research Paper

Authors

1 Department of Physics, Payame Noor University, POBOX 119395-3697, Tehran, Iran

2 Department of Physics, Payame Noor University, Tehran, Iran

Abstract

In this paper, by using first principle method we address the variation of bulk plasmon frequencies of diamond crystal underlying hydrostatic pressure in the rang 0-100 GPa. Further, optical properties such as reflectivity coefficient is also calculated. Based on electronic structure, density of transition probability and electron energy loss function, results show that by increasing the pressure to 100 GPa, plasmon excitation shifts to higher energies about 4 eV in the near ultra-violet regime along with increasing the electronic band gap. That is while enhancing the pressure would reduce the plasmon lifetimes via the formation of electron-hole pair. Our finding shows that the modulation of all optical features such as collective plasmonic excitations are possible by manipulation and control of dielectric function by external probes such as pressure.

Keywords


[1] M. Attarian Shandiz, R. Gauvin, Density functional and theoretical study of the temperature and pressure dependency of the plasmon energy of solids, Journal of Applied Physics 116 (2014) 163501. https://doi.org/10.1063/1.4898388  
[2] A. Catellani, A. Calzolari, Plasmonic properties of refractory titanium nitride, Physical Review B 95 (2017) 115145. https://doi.org/10.1103/PhysRevB.95.115145
[3] M.L. Brongersma, N.J. Halas, P. Nordlander, Nature nanotechnology 10 (2015), 25–34. https://www.ncbi.nlm.nih.gov/pubmed/25559968
[4] V.J. Keast, Ab initio calculations of plasmons and interband transitions in the low-loss electron energy-loss spectrum, Journal of Electron Spectroscopy and Related Phenomena 143 (2005) 97–104. https://doi.org/10.1016/j.elspec.2004.04.005
[5] R. Kushal, J. Vorberger. Journal of Physics: Condensed Matter 32 9 (2019) 095401. https://doi.org/10.1088/1361-648X/ab558e
 [6] A. Kazempour, Plasmon scattering in electron and hole doped diamond, T. Morshedloo, Superlattices and Microstructures 114 (2018) 386. https://doi.org/10.1016/j.spmi.2018.01.003
[7] I. Timrov, N. Vast, R. Gebauer, S. Baroni, Computer Physics Cmmunications 196 (2015) 460. https://doi.org/10.1016/j.cpc.2015.05.021
[8] I. Timrov, M. Markov, T. Gorni, M. Raynaud, O. Motornyi, R. Gebauer, S. Baroni, N. Vast, Ab initio study of electron energy loss spectra of bulk bismuth up to 100 eV, Physical Review B 95 (2017) 094301. https://doi.org/10.1103/PhysRevB.95.094301
[9] F. Caruso, F. Giustino, Theory of electron-plasmon coupling in semiconductors, Physical Review B 94 (2016) 115208.
[10] A. Kazempour, T. Morshedloo, Pressure dependency of electron-phonon renormalization in diamond, Diamond & Related Materials 70 (2016) 132. https://doi.org/10.1016/j.diamond.2016.10.015
[11] I. Aharonovich, A.D. Greentree, S. Prawer, Diamond photonics, Nature Photonics 5 (2011) 397. https://www.nature.com/articles/nphoton.2011.54
[12] J.P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Physical Review B 23 (1981) 5048. https://journals.aps.org/prb/issues/23/10
[13] Quantum-ESPRESSO is a community project for high-quality quantum-simulation software, based on density-functional theory, and coordinated by Paolo Giannozzi. See http://www.quantum espresso.org.
[14] A. Benassi; PWscf’s Epsilon. x User’s Manual. Vol. 3. Tech. Rep., Physics Department, Universita degli Studi di Modena e Reggio Emilia, and INFM, 2008. http://docplayer.net/49540858-P-w-scf-s-epsilon-x-user-s-manual.html
[15] H.C. Weissker, J. Serrano, S. Huotari, E. Luppi, M. Cazzaniga, F. Bruneval, F. Sottile, G. Monaco, V. Olevano, L. Reining, Dynamic structure factor and dielectric function of silicon for finite momentum transfer: Inelastic x-ray scattering experiments and ab initio calculations, Physical Review B 81 (2010) 085104. https://doi.org/10.1103/PhysRevB.81.085104
[16] S. Waidmann, M. Knupfer, B. Arnold, J. Fink, A. Fleszar, W. Hanke, Local-field effects and anisotropic plasmon dispersion in diamond, Physical Review B 61 (2000) 10149. https://doi.org/10.1103/PhysRevB.61.10149
[17] F. Occelli, P. Loubeyre, R. Letoulec, Properties of diamond under hydrostatic pressures up to 140 GPa, Nature Material 2 (2003) 151-154. https://doi.org/10.1038/nmat831
[18] I.V. Alexandrov, A.P. Goncharov, I.N. Makarenko, A.N. Zisman, E.V. Jakovenko, S.M. Stishov, Diamond and cubic boron nitride under high pressure: Raman scattering, equation of state and high pressure, High Press 1 (1989) 333. https://doi.org/10.1080/08957958908202491
[19] X.D. Fan, J.L. Peng, L.A. Bursill, Joint Density of States of Wide-Band-Gap Materials by Electron Energy Loss Spectroscopy, Modern physics letters B 12 (1998) 541. https://doi.org/10.1142/S0217984998000640
[20] I. Loa, K. Syassen, G. Monaco, G. Vanko, M. Krisch, M. Hanfland, Plasmons in Sodium under Pressure: Increasing Departure from Nearly Free-Electron Behavior, Physical Review Letters 107 (2011) 086402. https://doi.org/10.1103/PhysRevLett.107.086402