بررسی مواد انتقال‌دهنده الکترون متفاوت بر عملکرد اپتیکی سلول خورشیدی پروسکایتی

نوع مقاله: مقاله پژوهشی کامل

نویسندگان

گروه لیزر و فوتونیک، دانشکده فیزیک، دانشگاه کاشان، کاشان، ایران

چکیده

برای بررسی فرآیندهایی که در سلول‌های خورشیدی رخ می‌دهند، مدل‌های اپتیکی و الکتریکی بسیاری مورد استفاده قرار می‌گیرند. در این مقاله، شبیه‌سازی اپتیکی سلول خورشیدی پروسکایتی بر اساس فرمولبندی ماتریس انتقال با استفاده از ضرایب شکست مختلط تابع طول موج ساختار چندلایه‌ای ارائه شده‌است. به‌عبارتی برای سلول خورشیدی پروسکایتی با انتقال دهنده‌های الکترون متفاوت، خواص اپتیکی از جمله جذب اپتیکی، انرژی اتلاف شده و توزیع میدان الکتریکی ورودی ساختار به روش ماتریس انتقال بررسی شده‌اند. سپس، به‌منظور دستیابی به ضخامت بهینه لایه فعال سلول، اثر ضخامت این لایه بر نمودار چگالی جریان مدار کوتاه ساختارها مورد مطالعه قرار گرفت و ساختار بهینه انتخاب شد.

کلیدواژه‌ها


عنوان مقاله [English]

The Study of Different Electron Transporting Materials on the Optical Performance of the Perovskite Solar Cells

نویسندگان [English]

  • Arezoo Mohammadbeigi
  • Seyed Mohammad Bagher Ghorashi
Laser & photonics, physics, Kashan university, Kashan, Isfahan, Iran
چکیده [English]

For investigation of the processes occurred in solar cells, lots of optical and electrical modes are used. In this study, optical simulation of perovskite solar cell based on transfer matrix formalism using complex refractive index (as a function of wavelength) of multilayer structure is presented. In other words, optical properties such as, optical absorption, energy dissipation and incident electrical field distribution of the perovskite solar cells with different electron transporting materials by matrix method are studied. Then, in order to obtain the optimum thickness of the active layer, the effect of it’s thickness on the short-circuit current density are investigated and the optimum structure is selected

کلیدواژه‌ها [English]

  • Current density
  • Transfer matrix
  • Perovskite solar cell
[1] M.I. Khan, A Study on the Optimization of Dye-Sensitized Solar Cells, Graduate Theses and Dissertations (2013) 1–74. https://scholarcommons.usf.edu/etd/4519
[2] J. Zhao, A. Wang, M.A. Green, 24.5% efficiency PERT silicon solar cells on SEH MCZ substrates and cell performance on other SEH CZ and FZ substrates, Solar Energy Materials and Solar Cells 66 (2001) 27-36. https://doi.org/10.1016/S0927-0248(00)00155-0
 [3] K.R. Catchpole, M.J. McCann, K.J. Weber, A.W. Blakers, A review of thin film crystalline silicon for solar cell applications. Part 2: Foreign substrates, Solar Energy Materials and Solar Cells 68 (2001) 173-215. https://doi.org/10.1016/S0927-0248(00)00246-4
 [4] P. Boland, K. Lee, G. Namkoong, Device optimization in PCPDTBT: PCBM plastic solar cells, Solar Energy Materials and Solar Cells 94 (2010) 915-920. https://doi.org/10.1016/j.solmat.2010.01.022
 [5] C. Liang, Y. Wang, D. Li, X. Ji, F. Zhang, Z. He, Modelling and simulation of bulk heterojunction polymer solar cells, Solar Energy Materials and Solar Cells 127 (2014) 67-86. https://doi.org/10.1016/j.solmat.2014.04.009
 [6] J. Perlin, Silicon Solar Cell Turns 50, National Renewable Energy Laboratory, United States, (2004).
 [7] A.V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, J. Bailat, Thin-film silicon solar cell technology, Progress in Photovoltaics Research and applications 12 (2004) 113–142. https://doi.org/10.1002/pip.533
 [8] K.L. Chopra, P.D. Paulson, V. Dutta, Thin-film solar cells: an overview, Progress in Photovoltaics Research and applications 12 (2004) 69–92. https://doi.org/10.1002/pip.541
[9] A. Goetzberger, J. Luther, G. Willeke, Solar cells: Past, present, future, Solar Energy Materials and Solar Cells 74 (2002) 1-11. https://doi.org/10.1016/S0927-0248(02)00042-9
 [10] A. Hagfeldt, M. Grätzel, Molecular Photovoltaics, Accounts of Chemical Research 33 (2003) 269–277. https://doi.org/10.1021/ar980112j
 [11] D. Wohrle, D. Meissner, Organic Solar Cells, Advanced Materials 3 (1991) 129–138. https://doi.org/10.1002/adma.19910030303
 
[12] M. Grätzel, Dye-sensitized solar cells, Journal of photochemistry and photobiology C: Photochemistry Reviews 4 (2003) 145–153. https://doi.org/10.1016/S1389-5567(03)00026-1
 [13] H. Hoppe, N.S. Sariciftci, Organic solar cells: An overview, Journal of Materials Research 19 (2011) 1924–1945. https://doi.org/10.1557/JMR.2004.0252
 [14] M.A. Green, Third generation photovoltaics: Solar cells for 2020 and beyond, Physica E: Low Dimensional Systems and Nanostructures 14 (2002) 65-70. https://doi.org/10.1016/S1386-9477(02)00361-2
 [16] G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, H.J. Snaith, Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells, Energy & Environmental Science 7 (2014) 982-988. https://doi.org/10.1039/C3EE43822H
 
[17] J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Chemical management for colorful, efficient, and stable inorganic organic hybrid nanostructured solar cells, Nano Letters 13 (2013) 1764- 1769. https://doi.org/10.1021/nl400349b
 [18] M.A. Green, A. Ho-baillie, H.J. Snaith, The emergence of perovskite solar cells, Nature Photonics 8 (2014) 506-514. https://doi.org/10.1038/nphoton.2014.134
 [19] S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H.J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Science 342 (2013) 341-344. https://doi.org/10.1126/science.1243982
 [20] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, Journal of the American Chemical Society 131, (2009) 6050-6051.
 [21] Y. Tang, M. Li, Y. Zhang, Zh. Wang, X. Hou, Ch. Dong, Ch. Qin, Sh. Cao, Y.H. Jiang, Ultrafast carrier dynamics in high-performance α-bis-PCBM doped organic-inorganic hybrid perovskite solar cell, Organic Electronics 75 (2019) 105384.
 [22] N.J. Jeon, H. Na, E.H. Jung, T.-Y. Yang, Y.G. Lee, G. Kim, H.-W. Shin, S.Il Seok, J. Lee, J. Seo, A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells, Nature Energy 3, (2018) 682-689.
 [23] See http://www.nrel.gov/pv/assets/images/ efficiency-chart.png for more information about Best Research Cell Efficiencies (last accessed: October 2018).
 [24] P. Chen, E. Wang, X. Yin, H. Xie, M. Que, B. Gao, W. Que, Additive-assisted One-step Formed Perovskite/Hole conducting Materials Graded Heterojunction for Efficient Perovskite Solar Cells, Journal of Colloid and Interface Science 532 (2018) 182-189. https://doi.org/10.1016/j.jcis.2018.07.100
 [25] J. Cui, H. Yuan, J. Li, X. Xu, Y. Shen, H. Lin, M. Wang, Recent progress in efficient hybrid lead halide perovskite solar cells, Science and Technology of Advanced Materials16(2015) 1-14.  https://doi.org/10.1088/1468-6996/16/3/036004
 
[26] T.C. Sum, N. Mathews, Advancements in Perovskite Solar Cells: Photophysics behind the Photovoltaics, Energy & Environmental science 7 (2014) 2518-2534.
 [27] S. Zheng, G.Wang, T.Liu, L. Lou, S. Xiao, S.Yang, Materials and structures for the electron transport layer of efficient and stable perovskite solar cells, Science China Chemistry 62 (2019) 800–809. https://doi.org/10.1007/s11426-019-9469-1
 [28] M.F. Mohamad Noh, Ch. Hoong Teh, R. Daik, E. Liang Lim, Ch. Chin Yap, M. Adib Ibrahim, N.A. Ludin, Abd. R. Mohd Yusoff, J. Jang, M. Mat Teridi, The architecture of the electron transport layer for a perovskite solar cell, Journal of Materials Chemistry C 6 (2018) 682-712. https://doi.org/10.1039/C7TC04649A
 [29] H. Chang, C.W. Kung, H.W. Chen, T.Y. Huang, S.Y. Kao, H.C. Lu, M.H. Lee, K.M. Boopathi, C.W. Chu, Plannar Heterojunction Perovskite Solar Cells Incorporating Metalic-Organic Framework Nanocrystals, advanced Materials 27 (2015) 7229–7235. https://doi.org/10.1002/adma.201502537
[30] O.S. Heavens, Thin films and lasers, Annals of the New York Academy of Sciences 122 (1965) 638-642. https://doi.org/10.1111/j.1749-6632.1965.tb20244.x
[31] L.A.A. Pettersson, L.S. Roman, O. Inganäs, Modeling photocurrent action spectra of photovoltaic devices based on organic thin films, Journal of Applied Physics 86 (1999) 487–496. https://doi.org/10.1063/1.370757
[32] Ch. Chen, Sh. Hsiao, Ch. Chen, H. Kang, Zh. Huang, H. Lin, Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells, Journal of Materials Chemistry A 3 (2015) 9152-9159. https://doi.org/10.1039/C4TA05237D
[33] Q. Lin, A. Armin, R. Nagiri, P. Burn, P. Meredith, Electro-optics of perovskite solar cells, Nature Photonics 9, (2015) 106–112. https://doi.org/10.1038/nphoton.2014.284
[34] J.M. Ball, S.D. Stranks, M.T. Hörantner, S. Hüttner, W. Zhang, E.J.W. Crossland, I. Ramirez, M. Riede, M.B. Johnston, R.H. Friend, H.J. Snaith, Optical properties and limiting photocurrent of thin-film perovskite solar cells, Energy and Environmental science 8 (2015) 602-609.https://doi.org/10.1039/C4EE03224A
[35] E. Petoukhoff, K. Vijapurapu, M. O'carroll, Computational comparison of conventional and inverted organic photovoltaic performance parameters with varying metal electrode surface work function, Solar Energy Materials and Solar Cells120 (2014) 572-583. https://doi.org/10.1016/j.solmat.2013.09.041
[36] D. Liu, M.K. Gangishetty, T.L. Kelly, Effect of CH3NH3PbI3 thickness on device efficiency in planar heterojunction perovskite solar cells, Journal of Materials Chemistry A 2 (2014) 19873–19881.  https://doi.org/10.1039/C4TA02637C
[37] A.A.B. Baloch, Sh.P. Aly, M.I. Hossain, F. El-Mellouhi, N. Tabet, F.H. Alharbi, Full space device optimization for solar cells, Scientific Reports 7 (2017) 1-14. https://doi.org/10.1038/s41598-017-12158-0