اثر تغییرات ابعاد کوپلر کواکسیال به موجبر WG1800 روی فرکانس

نوع مقاله: مقاله پژوهشی کامل

نویسندگان

دانشکده فیزیک، دانشگاه یزد، یزد، ایران

چکیده

خطای ساخت در کوپلر کواکسیال به موجبر WG1800، باعث تغییر پارامترهای الکترومغناطیسی آن مانند فرکانس کار می‌شود. برای بررسی اثر این تغییرات، معمولاً از روش مونت‌کارلو استفاده می‌شود که بسیار زمان‌بر است. در این مقاله با استفاده از روش چند جمله‌ای آشوب تعمیم یافته، ابتدا اثر تغییرات ابعاد کاواک مستطیلی WR187 در فرکانس تشدیدی توضیح داده می‌شود. برای ارزیابی دقت این روش، نتایج حاصل، با نتایج روش تئوری و مونت‌کارلو مقایسه می‌شود. سپس با استفاده از روش چند جمله‌ای آشوب تعمیم یافته اثر تغییرات ابعاد کوپلر کواکسیال به موجبر WG1800 روی فرکانس بررسی می‌شود.


واژگان کلیدی: خطای ساخت، تغییرات، مونت‌کارلو، چند جمله‌ای آشوب تعمیم یافته، فرکانس.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of variations of dimensions of a coaxial to WG1800 waveguide coupler its frequency

نویسندگان [English]

  • Maryam Mostajeran
  • Ali Mohammad Nikdoust
Department of Physics, University of Yazd, Yazd, Iran
چکیده [English]

The fabrication tolerances for a coaxial to WG1800 waveguide coupler cause the variations of its electromagnetic parameter such as the working frequency. In order to investigate the effect of these uncertainty on the electromagnetic parameters, Monte Carlo method is usually used, which is very time consuming. In this paper, the generalized Polynomial Chaos (gPC) method is first used for study the effect of variations of dimensions of a WR187 rectangular cavity on the resonant frequency. To assessment the accuracy of this method, these results are compared with the Monte Carlo and the theory methods. In the second step, the effect of variations of dimensions of a coaxial to WG1800 waveguide coupler on its frequency is investigated using the gPC Method.

Key Words: Fabrication tolerances, Variations, Monte Carlo, generalized Polynomial Chaos, frequency.

کلیدواژه‌ها [English]

  • Fabrication tolerances
  • Variations
  • Monte Carlo
  • generalized Polynomial Chaos
  • Frequency
‏[1] P. Mattia, C.M. Sergio, G.M. Dimitrov, Comparative Analysis of Uncertainty Propagation Methods for Robust Engineering Design, Guidelines for a Decision Support Method Adapted to NPD Processes (2007).
‏[2] J. Heller, U. Van Rienen, T. Flisgen, C. Schmidt, Uncertainty Quantification for Complex RF-structures Using the State-space Concatenation Approach, Progress In Electromagnetics Research Proceedings, Prague, Czech Republic(2015) 374-378.
[3] C. Schmidt, T. Flisgen, J. Heller, U. van Rienen, Comparison of techniques for uncertainty quantification of superconducting radio frequency cavities, International Conference on Electromagnetics in Advanced Applications (2014) 117-120.
https://ieeexplore.ieee.org/abstract/document/6903838
[4] J. Heller, T. Flisgen, C. Schmidt, U. van Rienen, Quantification of geometric uncertainties in single cell cavities for BESSY VSR using polynomial chaos, In 5th International Particle Accelerator Conference, Dresden, Germany (2014) pp.415.
[5] D.M. Pozar, Microwave engineering, John Wiley & Sons (2009).
[6]M.Mostajeran, F. Kazemi. The resonant frequencies of the rectangular waveguide cavity resonator WR-187 using CST software and MATLAB program interface, 3rd National Conference on Particle Accelerators and their applications, (2017) 246-249.                                                         
[7] F. Naito, K. Akai, N. Akasaka, E. Ezura, T. Kageyama, T. Shintake, Y. Takeuchi and Y. Yamazaki, Input coupler for the KEKB normal conducting cavity, Proceedings Particle Accelerator Conference 3 IEEE, (1995) 1806-1808.
[8] M.Mostajeran, F. Kazemi. Optimization of a high-power coaxial coupler to 1800 waveguide coupler with high input power using CST simulator controlled by MATLAB., Iranian Journal of Physics Research, 17 5, (2018)795-804.‏
https://ijpr.iut.ac.ir/article_1322.html
[9] R.G. Ghanem, P.D. Spanos, Stochastic Finite Element Method: Response Statistics, Stochastic Finite Elements: A Spectral Approach, Springer, New York, (1991) 101-119.
[10] J. Feinberg, Some improvements and applications of non-intrusive polynomial chaos expansions, PhD Thesis, University of Oslo (2015).
[11] M.S. Eldred, C.G. Webster, P.G. Constantine, Evaluation of Non-Intrusive Approaches for Wiener-Askey Generalized Polynomial Chaos, Proceedings of the 10th AIAA nondeterministic approaches conference (2008) 1892-1914.
[12] J. Waldvogel, Fast construction of the Fejer and Clenshaw–Curtis quadrature rules, BIT Numerical Mathematics 46 1 (2006) 195-202.
https://link.springer.com/article/10.1007/s10543-006-0045-4
‏[13] S.H. Lee, W. Chen, A comparative study of uncertainty propagation methods for black-box type functions, ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers (2007) 1275-1284.
[14]F. Jamshidi, M. Falah, Z. Khani, M. Keshavarz, Density estimation for statistics and data, Statistics Research Institute, Statistical Centre of Iran (2005).
[15] F. Nobile, R. Tempone, C.G. Webster, An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data, SIAM Journal on Numerical Analysis 46 5(2008) 2411-2442.
[16] A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Ratto, S. Tarantola, Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index, Computer Physics Communications 181 2(2010) 259-270.
[17] S. Tennøe, G. Halnes, G.T. Einevoll, Uncertainty: A Python toolbox for uncertainty quantification and sensitivity analysis in computational neuroscience, Frontiers in neuroinformatics 12 (2018) 49.
‏[18] K. Sargsyan, C. Safta, K. Chowdhary, S. Castorena, S. De Bord, B. Debusschere, UQTK version 3.0.4 user manual, Sandia National Laboratories, Sandia report, (2017) 11051.
‏[19] I.M. Sobol, Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Mathematics and computers in simulation 551-3 (2001) 271-280.