[1] P. Mattia, C.M. Sergio, G.M. Dimitrov, Comparative Analysis of Uncertainty Propagation Methods for Robust Engineering Design, Guidelines for a Decision Support Method Adapted to NPD Processes (2007).
[2] J. Heller, U. Van Rienen, T. Flisgen, C. Schmidt, Uncertainty Quantification for Complex RF-structures Using the State-space Concatenation Approach, Progress In Electromagnetics Research Proceedings, Prague, Czech Republic(2015) 374-378.
[3] C. Schmidt, T. Flisgen, J. Heller, U. van Rienen, Comparison of techniques for uncertainty quantification of superconducting radio frequency cavities, International Conference on Electromagnetics in Advanced Applications (2014) 117-120.
https://ieeexplore.ieee.org/abstract/document/6903838
[4] J. Heller, T. Flisgen, C. Schmidt, U. van Rienen, Quantification of geometric uncertainties in single cell cavities for BESSY VSR using polynomial chaos, In 5th International Particle Accelerator Conference, Dresden, Germany (2014) pp.415.
[5] D.M. Pozar, Microwave engineering, John Wiley & Sons (2009).
[6]M.Mostajeran, F. Kazemi. The resonant frequencies of the rectangular waveguide cavity resonator WR-187 using CST software and MATLAB program interface, 3rd National Conference on Particle Accelerators and their applications, (2017) 246-249.
[7] F. Naito, K. Akai, N. Akasaka, E. Ezura, T. Kageyama, T. Shintake, Y. Takeuchi and Y. Yamazaki, Input coupler for the KEKB normal conducting cavity, Proceedings Particle Accelerator Conference 3 IEEE, (1995) 1806-1808.
[8] M.Mostajeran, F. Kazemi. Optimization of a high-power coaxial coupler to 1800 waveguide coupler with high input power using CST simulator controlled by MATLAB., Iranian Journal of Physics Research, 17 5, (2018)795-804.
https://ijpr.iut.ac.ir/article_1322.html
[9] R.G. Ghanem, P.D. Spanos, Stochastic Finite Element Method: Response Statistics, Stochastic Finite Elements: A Spectral Approach, Springer, New York, (1991) 101-119.
[10] J. Feinberg, Some improvements and applications of non-intrusive polynomial chaos expansions, PhD Thesis, University of Oslo (2015).
[11] M.S. Eldred, C.G. Webster, P.G. Constantine, Evaluation of Non-Intrusive Approaches for Wiener-Askey Generalized Polynomial Chaos, Proceedings of the 10th AIAA nondeterministic approaches conference (2008) 1892-1914.
[12] J. Waldvogel, Fast construction of the Fejer and Clenshaw–Curtis quadrature rules, BIT Numerical Mathematics 46 1 (2006) 195-202.
https://link.springer.com/article/10.1007/s10543-006-0045-4
[13] S.H. Lee, W. Chen, A comparative study of uncertainty propagation methods for black-box type functions, ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers (2007) 1275-1284.
[14]F. Jamshidi, M. Falah, Z. Khani, M. Keshavarz, Density estimation for statistics and data, Statistics Research Institute, Statistical Centre of Iran (2005).
[15] F. Nobile, R. Tempone, C.G. Webster, An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data, SIAM Journal on Numerical Analysis 46 5(2008) 2411-2442.
[16] A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Ratto, S. Tarantola, Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index, Computer Physics Communications 181 2(2010) 259-270.
[17] S. Tennøe, G. Halnes, G.T. Einevoll, Uncertainty: A Python toolbox for uncertainty quantification and sensitivity analysis in computational neuroscience, Frontiers in neuroinformatics 12 (2018) 49.
[18] K. Sargsyan, C. Safta, K. Chowdhary, S. Castorena, S. De Bord, B. Debusschere, UQTK version 3.0.4 user manual, Sandia National Laboratories, Sandia report, (2017) 11051.
[19] I.M. Sobol, Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Mathematics and computers in simulation 551-3 (2001) 271-280.