طراحی تارهای بلورفوتونی دایروی برای هدایت و کنترل تکانه زاویه‌ای مداری نور

نوع مقاله: مقاله پژوهشی کامل

نویسندگان

1 عضو هیات علمی دانشگاه صنعتی شیراز

2 دانشکده فیزیک، دانشگاه صنعتی شیراز، فارس، ایران

چکیده

در این مقاله، تارهای بلور فوتونی دایروی برای هدایت و کنترل تکانه زاویه‌ای مداری نور طراحی و شبیه‌سازی می‌شوند. برای تعیین پارامتر‌های بهینه‌ی تار بلور فوتونی دایروی شرایط به گونه‌ای در نظر گرفته می‌شود که جفت شدگی اسپین- مدار مدهای نور درون تار از بین برود. همچنین برای کاربردهای مخابراتی، پاشندگی مدها باید در یک بازه‌ی طول موجی وسیع (۲۵/۱ تا ۲ میکرومتر) مسطح باشد و مدهای تکانه زاویه‌ای مداری نور از تلفات تحدید پایین برخوردار باشند. شبیه‌سازی‌ها برای مقادیر مختلف از کسر پرشدگی هوا f انجام می‌شود و با مقایسه‌ی نتایج، بهترین مقدار بدست می‌آید. نتایج نشان می‌دهد تار طراحی شده قادر به پشتیبانی از گروه مدهای تکانه‌ی زاویه‌ای مداری تا و با مرتبه‌ی بار توپولوژیکیl=4 است. همچنین، تار طراحی شده کیفیت بالایی را از نظر پاشندگی و تلفات مد‌های تکانه زاویه‌ای مداری نور از خود نشان می‌دهد؛ از این رو می‌تواند برای تکنیک تسهیم فضایی علاوه بر تکنیک های مرسوم نظیر تسهیم طول موجی در مخابرات نوری استفاده شود.

کلیدواژه‌ها


عنوان مقاله [English]

Designed of circular photonic crystal fibers (C-PCFs) for guiding and controlling the orbital angular momentum of light

نویسندگان [English]

  • hassan pakarzadeh 1
  • vahid sharif 2
  • Mahdi Bahadoran 2
1 Department of Physics, Shiraz University of technology, Fars, Shiraz, Iran.
2 Department of Physics, Shiraz University of technology, Fars, Shiraz, Iran.
چکیده [English]

In this paper, we designed and simulated the circular photonic crystal fibers (C-PCFs) for guiding and controlling the orbital angular momentum (OAM) of light. The optimum parameters in C-PCFs were archived by considering the conditions that eliminate the spin-orbit coupling for each guided mode. Moreover, for optical communication applications, a flat modal dispersion is required for a wide wavelength range from 1.25 to 2 µm and the OAM modes must have a low confinement loss. For different fractions of air filling (f), the results were simulated and compared to achieve the best values of f. According the simulated results, the proposed design of C-PCF can support a group of OAM modes up to HE51 and EH31 with topological charge of l=4. Furthermore, our C-PCF shows high quality in terms of dispersion and OAM mode losses, which can additionally be used in space-division multiplexing rather than the conventional wavelength-division multiplexing for optical communication systems.

کلیدواژه‌ها [English]

  • Orbital angular momentum (OAM) of light
  • Circular photonic crystal fibers (C-PCFs)
  • Dispersion
  • Confinement loss
 
]1[ L. Allen, M.W. Beijersbergen, R. Spreeuw, J. Woerdman, Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes, Physical Review A 45 (1992) 8185. https://doi.org/10.1103/PhysRevA.45.8185
]2[ G. Gibson, J. Courtial, M.J. Padgett, M. Vasnetsov, V. Pas’ko, S.M. Barnett, et al., Free-space information transfer using light beams carrying orbital angular momentum, Optics express 12 (2004) 5448-5456. https://doi.org/10.1364/OPEX.12.005448
]3[ A.M. Yao, M.J. Padgett, Orbital angular momentum: origins, behavior and applications, Advances in Optics and Photonics 3 (2011) 161-204. https://doi.org/10.1364/AOP.3.000161
]4[ K. Ladavac, D.G. Grier, Microoptomechanical pumps assembled and driven by holographic optical vortex arrays, Optics Express 12 (2004) 1144-1149. https://doi.org/10.1364/OPEX.12.001144
]5[ M. Padgett, L. Allen, Optical tweezers and spanners, Physics World 10 (1997) 35.
]6[ A.E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, et al., Optical communications using orbital angular momentum beams, Advances in Optics and Photonics 7 (2015) 66-106. http://dx.doi.org/10.1364/AOP.7.000066
]7[ Y. Ren, Z. Wang, P. Liao, L. Li, G. Xie, H. Huang, et al., Experimental characterization of a 400 Gbit/s orbital angular momentum multiplexed free-space optical link over 120 m, Optics letters 41 (2016) 622-625. https://doi.org/10.1364/OL.41.000622
]8[ N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, et al., Terabit-scale orbital angular momentum mode division multiplexing in fibers, science 340 (2013) 1545-1548.
https://doi: 10.1126/science.1237861
]9[ C. Brunet, B. Ung, L. Wang, Y. Messaddeq, S. LaRochelle, and L. A. Rusch, Design of a family of ring-core fibers for OAM transmission studies, Optics express 23 (2015) 10553-10563. https://doi.org/10.1364/OE.23.010553
]10[ N. Bozinovic, S. Golowich, P. Kristensen, S. Ramachandran, Control of orbital angular momentum of light with optical fibers, Optics letters 37 (2012) 2451-2453.
]11 [P. Gregg, P. Kristensen, S. Ramachandran, Conservation of orbital angular momentum in air-core optical fibers, Optica 2 (2015) 267-270. https://doi.org/10.1364/OPTICA.2.000267
]12[ G. Wong, M.S. Kang, H. Lee, F. Biancalana, C. Conti, T. Weiss, et al., Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber, Science 337 (2012) 446-449. https://doi.org/10.1126/science.1223824
]13[ C. Fu, S. Liu, Y. Wang, Z. Bai, J. He, C. Liao, et al., High-order orbital angular momentum mode generator based on twisted photonic crystal fiber, Optics letters 43 (2018) 1786-1789. https://doi.org/10.1364/OL.43.001786
]14[ H. Zhang, W. Zhang, L. Xi, X. Tang, X. Zhang, X. Zhang, A new type circular photonic crystal fiber for orbital angular momentum mode transmission, IEEE Photonics Technology Letters 28 (2016)  1426-1429. https://doi.org/10.1109/LPT.2016.2551325
]15[ H. Zhang, X. Zhang, H. Li, Y. Deng, X. Zhang, L. Xi, et al., A design strategy of the circular photonic crystal fiber supporting good quality orbital angular momentum mode transmission, Optics Communications  397 (2017) 59-66. https://doi.org/10.1016/j.optcom.2017.03.075
]16[ W. Tian, H. Zhang, X. Zhang, L. Xi, W. Zhang, X. Tang, A circular photonic crystal fiber supporting 26 OAM modes, Optical Fiber Technology 30 (2016) 184-189. https://doi.org/10.1016/j.yofte.2016.07.009
]17[ Y. Deng, H. Zhang, H. Li, X. Tang, L. Xi, W. Zhang, et al., Erbium-doped amplification in circular photonic crystal fiber supporting orbital angular momentum modes, Applied optics 56 (2017) 1748-1752. https://doi.org/10.1364/AO.56.001748
]18[ H. Pakarzadeh, V. Sharif, Control of orbital angular momentum of light in optofluidic infiltrated circular photonic crystal fibers, Optics Communications 438 (2019) 18-24. https://doi.org/10.1016/j.optcom.2019.01.007
]19[ H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, et al., 100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength, Optics letters 39 (2014) 197-200. https://doi.org/10.1364/OL.39.000197
]20[ H. Li, H. Zhang, X. Zhang, Z. Zhang, L. Xi, X. Tang, et al., Design tool for circular photonic crystal fibers supporting orbital angular momentum modes, Applied optics 57 (2018) 2474-2481. https://doi.org/10.1364/AO.57.002474
]21[ G.P. Agrawal, Nonlinear fiber optics, Springer, (2000).