در هم تنیدگی و گرمای ویژه در یک سیستم باز کوانتومی با اندرکنش جینز-کامینگ در طی فرآیند های غیرمارکوی

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

1 گروه فیزیک، واحد اهواز،دانشگاه آزاد اسلامی،اهواز،ایران

2 گروه فیریک، واحد اهواز، دانشگاه آزاد اسلامی،اهواز، ایران

3 گروه فیزیک، دانشگاه شاهرود، شاهرود ایران، کد پستی: ۳۶۱–۳۶۱۹۹۹۵۱۶۱

چکیده

در این بررسی، مدل اندرکنشی ژیانس-کامینگز که ذرات سیستم در معرض حمام بوزونی قرار دارند را در نظر می گیریم و فرض می کنیم که سیستم دارای دو ذره اسپین 1/2 با اندرکنش اسپینی تبادلی باشد. همچنین فرض بر آن است هر یک از ذرات سیستم در معرض حمام بوزونی جداگانه با توزیع فرکانسی لورنتس قرار دارند. با استفاده از معادله ون-لیوویل و اعمال تقریب بورن-مارکوف، ماتریس چگالی سیستم را به عنوان تابعی از زمان و دما درطی فرآیند های غیر مارکوی بدست می آوریم. فرمول جدیدی را برای محاسبه گرمای ویژه با استفاده از ویژه مقادیر ماتریس چگالی ارائه می دهیم. همچنین، درهمتنیدگی کوانتومی را به عنوان تابعی از دما و زمان و وپارامترهای موجود در هامیلتونی بررسی می کنیم. ما همچنین، از نمودارها ی بدست آمده برای درهمتنیدگی و گرمای ویژه، متوجه شدیم هنگامی که دمای سیستم به صفر میل می کند، حالت آن دارای بیشترین مقدار درهمتنیدگی کوانتومی بوده وگرمای ویژه نیزبرخلاف قانون سوم ترمودینامیک، واگرا می شود. همچنبن از نمودارها درمی یابیم، هنگامی که دستگاه در معرض محیط قرار می گیرد گرمای ویژه می تواند مقادیر منفی نیز داشته باشد. بنظر می رسد این موارد می تواند در طراحی گیتهای کوانتومی جامد دارای اهمیت باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Entanglement and Specific Heat in an Open Quantum System with the Jeans-Cumming Interaction during Non-Markovian Processes

نویسندگان [English]

  • bahar pourali 1
  • behzad lari 2
  • Hassan Hassanabadi 3
1 Department of Physics, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
2 Department of physics,Ahvaz Branch,Islamic Azad Univercity,Ahvaz,Iran
3 Physics Department, Shahrood University, Shahrood, Iran, P. O. Box 3619995161-316
چکیده [English]

In this work, we consider the Jaynes-Cumming (J-C) interaction in which the particles of the system exposed to the bosonic bath. It is supposed that the system includes two spins 1/2 particles with the spin-exchange interaction. It assumes that each of the particles is in a separate bosonic bath with the Cauchy-Lorentz distribution. using the Liouville-von Neumann equation and applying the Born approximation, we obtain the density matrix of the system as a function of both time and temperature during the Non-Markovian processes. Moreover, in order to calculate the specific heat, a new formula is presented by using the eigenvalues of the density matrix. we consider the quantum entanglement (EN) as a function of time, temperature and the other parameters in Hamiltonian. The results obtained from these investigations show that, when the temperature of the system tends to zero, the state of system takes the maximum value of Entanglement (EN) and the specific heat diverges. The other result is the negative amount in specific heat at the moment of the system attached to the environment. These results play an important role in designing the solid quantum gates whose operations are based on the EN and thermal properties of the environment.

کلیدواژه‌ها [English]

  • Open Quantum System
  • Jaynes-Cumming Interaction
  • Born approximation
  • Entanglement
  • Specific Heat
[1] M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, (2000).
[2] G.P. Berman, G.D. Doolen, R. Mainieri, Introduction to Quantum Computers, World Scientific, (1998) 41-42.
[3] C. Simon, M, Afzelius, J. Appel, Quantum Memories, European Physical Journal D 58 1 (2010) 1-22. https://doi.org/10.1140/epjd/e2010-00103-y
[4] H.J. Kimble, The quantum internet, Nature 453 (2008) 1023–1030. https://doi.org/10.1038/nature07127
[5] A.S.M. Hassan, B. Lari, P.S. Joag, Tight lower bound to the geometric measure of quantum discord, Physical Review A 85 024302(2012). https://doi.org/10.1103/PhysRevA.85.024302
[6] C. Monroe, D.M. Meekhof, B.E. King, W.M. Itano, D. Wineland, Demonstration of a Fundamental Quantum Logic Gate, Physical Review Letters 75 25 (1995) 4714–4717.
https://doi.org/10.1103/PhysRevLett.75.4714             

[7] A.S.M. Hassan, B. Lari, P.S. Joag, Thermal quantum and classical correlations in a two-qubit XX model in a non-uniform external magnetic field, Journal of Physics A: Mathematical and Theoretical, 43 485302 (2010).

https://doi.org/10.1088/1751-8113/43/48/485302

[8] A.S.M. Hassan, P.S. Joag, Separability Criterion for multipartite quantum states based on the Bloch representation of density matrices, Quantum Information and Computation, 8 8&9 (2008), 0773-0790.

https://doi.org/10.26421/QIC8.8-9

[9] M.W. Jack, M. Naraschewski, M.J. Collett, D.F. Walls, Markov approximation
[10] C. Karlewski, M. Marthaler, Time-local master equation connecting the Born and Markov approximations, Physical Review B 90 04302 (2014). https://doi.org/10.1103/PhysRevB.90.104302
[11] H.P. Breuer, E.M. Laine, J. Pilo, B. Vacchini, Non-Markovian dynamics in open quantum systems, Reviews Of Modern Physics, 88021002  (2016). https://doi.org/10.1103/RevModPhys.88.021002
[12] L.K. Castelano, F.F. Fanchini, K. Berrada, Open quantum system description of singlet-triplet qubits in quantum dots, Physical Review B 94 235433 (2016). https://doi.org/10.1103/PhysRevB.94.235433
[13] E.K. Bashkirov, M.S. Mastyugin, Entanglement between two qubits induced by thermal field, Journal of Physics: Conference Series, 735 012025 (2016). https://doi.org/10.1088/1742-6596/735/1/012025
[14] C. Joshi, P. Ohberg, J.D. Cresser, E. Andersson, Markovian evolution of strongly coupled harmonic oscillators, Physical Review A 90063815 (2014).
[15] W.H. Zurek, Quantum Darwinism, Nature Physics 5 (2009) 181-188.
[16] R.B. Kohout, W.H. Zurek, Physical Review A73 062310 (2006). https://doi.org/10.1038/nphys1202
[17] F. Galve, R. Zambrini, S. Maniscalco, Non-Markovianity hinders Quantum Darwinism, Scientific Reports 6 19607(2016).
https://doi.org/10.1038/srep19607
[18] S. Ashhab, P.C. Groot, F. Nori,  Speed limits for quantum gates in multi qubit systems, Physical Review A 85052327 (2012). https://doi.org/10.1103/PhysRevA.85.052327
[19] F.F. Fanchini, M.F. Cornelio, M.C. de Oliveira, A.O. Caldeira, Conservation law for distributed entanglement of formation and quantp20[um discord, Physical Review A 84 012313 (2011). https://doi.org/10.1103/PhysRevA.84.012313
[20] I. Sinaysky, E. Ferraro, A. Napoli, A. Messina, F. Petruccione, Non-Markovian dynamics of an interacting qubit pair coupled to two independent bosonic baths, Journal of Physics A: Mathematical and Theoretical, 42 485301 (2009). https://doi.org/10.1088/1751-8113/42/48/485301
[21] S. Hill, W.K. Wootters, Entanglement of a Pair of Quantum Bits, Physical Re-view Letters 78 5022 (1997). https://doi.org/10.1103/PhysRevLett.78.5022

[22] W.K. Wootters, Entanglement of Formation of an Arbitrary State of Two Qubits, Physical Review letters 802245 (1998).

https://doi.org/10.1103/PhysRevLett.80.2245
[23] A.S.M. Hassan, P.S. Joag, Separability criterion for multipartite quantum states based on the Bloch representation of density matrices, Quantum Information and Computation 8 773 (2007).
https://doi.org/10.26421/QIC8.8-9
]24[ R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press (1985). https://doi.org/10.1017/CBO9780511810817
[25] G.L. Ingold, P. Hanggi, P. Talker, Specific heat anomalies of open quantum systems, Physical Review E 79 061105 (2009).
https://doi.org/ 10.1103/PhysRevE.79.061105
[26] B. Leggio, A. Napoli, H. Nakazato, A. Messina, Heat capacity and entanglement measure in a simple two-qubit model, Journal of Russian Laser Research, 32 4 (2011) 3662-3371.
https://doi.org/10.1007/s10946-011-9224-0
[27] M.C. Wiesniek, V .Vedral, C. Brukner, Heat capacity as an indicator of entanglement, Physical ReviewB 78 064108 (2008).