رسانندگی الکتریکی پلاسمای کوارک – گلئون ناهمسانگرد

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

1 گروه فیزیک، دانشکده علوم پایه، دانشگاه ایلام، ایلام، ایران

2 گروه علوم مهندسی و فیزیک مهندسی، مرکز آموزش عالی فنی و مهندسی بوئین زهرا، بوئین زهرا، قزوین، ایران

چکیده

در این مقاله، یک پلاسمای ابر یانگ- میلز ناهمسانگرد در دمای متناهی را در نظر می‌گیریم و رسانندگی الکتریکی آن را در حضور یک میدان الکتریکی یکنواخت بررسی می‌کنیم. با اعمال میدان الکتریکی در دو جهت متفاوت، تاثیر شدت میدان الکتریکی، چگالی بار و پارامتر ناهمسانگردی را بر رسانندگی الکتریکی پلاسمای مورد نظر مطالعه می‌کنیم. ابتدا میدان الکتریکی خارجی یکنواخت را در جهت مختصه عرضی x در نظر می‌گیریم ‌و پس از آن میدان الکتریکی خارجی در جهت مختصه طولی z به سیستم اعمال می‌شود. در پایان نتایج به دست آمده در دو جهت مختلف را با یکدیگر مقایسه می‌کنیم. علاوه بر این نتایج به دست آمده با سیاهچاله همسانگرد شوارتزشیلد AdS و مدل غیربحرانی AdS6 نیز مقایسه می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Electric conductivity of anisotropic quark-gluon plasma

نویسندگان [English]

  • jalil Naji 1
  • sohila shahrban 1
  • Sara Heshmatian 2
  • Fatemeh Ahmadi 2
1 Department of Physics, Faculty of Science, Ilam University, Ilam, Iran
2 Department of Engineering Science and Physics, Buein Zahra Technical University, Buein Zahra, Qazvin, Iran
چکیده [English]

In this paper, we consider the anisotropic super Yang-Mils plasma at finite temperature and and calculate its conductivity in the presence of a constant electric field. By applying the electric field in two different directions, we study the effect of the electric field, charge density and anisotropy parameter on the electrical conductivity of the plasma. We first consider the constant external electric field in the longitudinal x-direction, and then the external electric field is applied to the system in the longitudinal z- direction. At the end, we compare the results of two different directions with each other. Also, we compare the results with those from isotropic Ads-Schwarzschild black hole and non-critical Ads6 model.

کلیدواژه‌ها [English]

  • quark- gluon plasma
  • anisotropy
  • gauge-gravity duality
  • electrical conductivity
[1] J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Advances in Theoretical and Mathematical Physics2 (1998) 231-252. https://10.4310/ATMP.1998.v2.n2.a1
[2] E. Witten, Anti de Sitter Space and Holography, Advances in Theoretical and Mathematical Physics2 (1998) 253- 291. https://dx.doi.org/10.4310/ATMP.1998.v2.n2.a2
[3]S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Gauge theory correlators from noncritical string theory, Physics Letters B 428 (1998) 105-114. http://10.1016/S0370-2693(98)00377-3
[4] C. Bachas, M. Porrati, Pair creation of open strings in an electric field, Physics Letters B 296 (1992) 77-84. https://10.1016/0370-2693(92)90806-F
[5] C. Bachas, D-brane dynamics, Physics Letters B,374 (1996) 37-42. https://10.1016/0370-2693(96)00238-9
[6] G.W. Semenoff, K. Zarembo, Holographic Schwinger Effect, Physical Review Letters, 107 (2011) 17- 21. https://10.1103/PhysRevLett.107.171601
[7] T. Oka, H. Aoki, Ground-State Decay Rate for the Zener Breakdown in Band and Mott Insulators, Physical Review Letters, 95 (2005) 13-23. https://doi.org/10.1103/PhysRevLett.95.137601
[8] T. Oka,  H. Aoki, Quantum Foundations And Open Quantum Systems, Lecture Note. World scientific, 2008.
[9] E. Bavarsad ,M. Mortezazadeh, Trace of energy-momentum tensor and gravitational backreaction of Schwinger scalars in 3D de Sitter spacetime, Iranian Journal of Physics Research,18 (2018) 91-103.
[10] E. BavarsadN. Margosian, Gravitational backreaction effect of Schwinger pair production in a strong electric field in de Sitter spacetime. Journal of Research on Many-body System 8 17 (2018) 1-10. 10.22055/jrmbs.2018.13879
[11] K. Yagi, T. Hatsuda, Y. Miake, Quark-Gluon Plasma from Big Bang to Little Bang, Cambridge University Press, 2005. https://inspirehep.net/record/702469/
[12] D.E. Kharzeev, L.D. McLerran, H.J. Warringa, The effects of topological charge change in heavy ion collisions: Event by event P and CP violation, Nuclear Physics A. 803 (2008) 227-253. https://10.1016/j.nuclphysa.2008.02.298
[13] F. Gelis, E. Iancu, J. Jalilian-Marian, R. Venugopalan, The Color Glass Condensate, Annual Review of Nuclear and Particle Science, 60 (2010) 463-489, https://10.1146/annurev.nucl.010909.083629   
[14] T. Lappi, L. McLerran, Some Features of the Glasma, Nuclear Physics A, 772 (2006) 113-224, https://10.1016/j.nuclphysa.2006.04.001
[15] W. Florkowski, Anisotropic fluid dynamics in early stage of relativistic heavy-ion collisions, Physics Letters B, 668 (2008) 32-35. https://10.1016/j.physletb.2008.07.101
[16] W. Florkowski and R. Ryblewski, Dynamics of anisotropic plasma at early stages of relativistic heavy-ion collisions, Acta Physica Polonica B, 40 (2009) 2843-2863. https://inspirehep.net/record/812010
[17] R. Ryblewski, W. Florkowski, General formulation of transverse hydrodynamics, Physical Review C 77 (2008) 64906. https://10.1103/PhysRevC.77.064906
[18] P. Romatschke and M. Strickland, Collective modes of an anisotropic quark-gluon plasma, Physical Review D 68 (2003) 036004. https://doi.org/10.1103/PhysRevD.68.036004.
[19] P. Arnold, G. Moore, L. Yaffe, Fate of non-Abelian plasma instabilities in 3+1 dimensionsPhysical Review D 72 (2005) 54003-54031.  https://doi.org/10.1103/PhysRevLett.78.2062.
[20] A. Rebhan, M. Strickland and M. Attems,, Instabilities of an anisotropically expanding non-Abelian plasma: 1D+3V discretized hard-loop simulations, Physical Review D, 78 (2008) 045023. 10.1103/PhysRevD.78.045023
[21] D. Mateos, D. Trancanelli, Anisotropic N=4 Super-Yang-Mills Plasma and Its Instabilities, Physical Review Letters, 107 (2011) 101601. https://doi.org/10.1103/PhysRevLett.107.10161
[22] D. Mateos, D. Trancanelli, Thermodynamics and Instabilities of a Strongly Coupled Anisotropic Plasma) Journal of High Energy Physics, 054 (2011). http://10.1007/JHEP07(2011)054.
[23] D. AvilaD. FernandezL. PatinoD. Trancanelli, Thermodynamics of anisotropic branes, Journal of High Energy Physics, 132 (2016) 1-26. https://10.1007/JHEP11(2016)132.
[24] A. Karch, A. O’Bannon, Metallic AdS/CFT, Journal of High Energy Physics, 09 (2007) 024. https://doi.org/10.1088/11266708/2007/09/024
[25] K. Hashimoto, T. Oka, Vacuum instability in electric fields via AdS/CFT: Euler-Heisenberg Lagrangian and Planckian thermalization, Journal of High Energy Physics, 10 (2013) 116. https://doi.org/10.1007/JHEP10(2013)116
[26] S. Heshmatian, J. Naji, Electric Conductivity of Non-Equilibrium QCD, Journal of Research on Many-body System, 10 (2017) 51-59.10.22055/jrmbs.2017.13006